General Relativity For
Tellytubbys
Calculus Of Variations
Sir Kevin Aylward B.Sc.,
Warden of the Kings Ale
Back
to the Contents section
Overview
This section covers some
bits and pieces that may not have been previously covered.
A straight line on a curved
surface is defined as the shortest
distance between two points. This bit is pretty obvious really. Get a map and
draw a line from London to New York. Try drawing that line on a globe. Yep, the
Concord flies over Greenland, well not anymore it don't, what with the crash
and all. So that’s the shortest path ain't it, but the flat map shows something
way different don’t it.
So, given a surface, one
needs to find out the equation for these "straight" lines, which are
called geodesics. To do this we first need to find out how to find the minimum
of an integral. In the particular case of G.R., the integral will be the
distance function.
We are going to do a bit of
hand waving here, but this reminds me to point out some useful information. For
those yanks reading this, you guys have got it completely wrong about Robin
Hood. You have this quaint and so naive idea about Europe, that it’s a wonder
you can tie your own shoelaces. Look, it’s a complete misconception that Robin
Hood stole from the rich and gave to the poor. In fact, what actually happened
was that he stole from the rich and waved
to the poor.
Euler-Lagrange
Differential Equation
Consider the integral
I=
∫
f(x,y,
y
˙
)
dx
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiysaiabg2da9maapeaabaGaamOzaiaacIcacaWG4bGaaiilaiaadMhacaGGSaGabmyEayaacaGaaiykaaWcbeqab0Gaey4kIipakiaadsgacaWG4baaaa@4258@
The job is to find the
function that minimizes this integral, subject to certain conditions. This is
technically described as finding the stationery value of the integral (because
that sounds more impressive), which may actually be a local maximum, local
minimum or point of inflection, in the following notation.
δ
∫
f(x,y,y')
dx=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aa8qaaeaacaWGMbGaaiikaiaadIhacaGGSaGaamyEaiaacYcacaWG5bGaai4jaiaacMcaaSqabeqaniabgUIiYdGccaWGKbGaamiEaiabg2da9iaaicdaaaa@448C@
First the answer is:
∂f
∂y
−
d
dx
(
∂f
∂
y
x
)=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamyEaaaacqGHsisldaWcaaqaaiaadsgaaeaacaWGKbGaamiEaaaacaGGOaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamyEamaaBaaaleaacaWG4baabeaaaaGccaGGPaGaeyypa0JaaGimaaaa@4796@
where yx means
the derivative of y wrt x
And no surprise to see that
this extends to
∂f
∂
y
α
−
d
d
x
α
(
∂f
∂
y
x
α
)=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamyEamaaCaaaleqabaGaeqySdegaaaaakiabgkHiTmaalaaabaGaamizaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHXoqyaaaaaOGaaiikamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kaadMhadaWgaaWcbaGaamiEamaaCaaameqabaGaeqySdegaaaWcbeaaaaGccaGGPaGaeyypa0JaaGimaaaa@4D1A@
When there are a number of
variables, and where the x's are summed over the number of variables.
Now on to the derivation of
the above.
Euler-Lagrange
Derivation
Consider the function,
defined by:
u=y+α.g(x), such that g(a)=g(b)= 0 so that at α=0 u=y
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiyDaiabg2da9iaadMhacqGHRaWkcqaHXoqycaGGUaGaai4zaiaacIcacaWG4bGaaiykaiaabYcacaqGGaGaae4CaiaabwhacaqGJbGaaeiAaiaabccacaqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaacEgacaGGOaGaamyyaiaacMcacqGH9aqpcaGGNbGaaiikaiaadkgacaGGPaGaeyypa0JaaeiiaiaabccacaqGWaGaaeiiaiaabccacaqGZbGaae4BaiaabccacaqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabggacaqG0bGaaeiiaiabeg7aHjabg2da9iaabcdacaqGGaGaaiyDaiabg2da9iaacMhaaaa@6579@
i.e. vary y about a bit in
order to get the best y.
the integral is now
I=
∫
f(x,u,
u')dx
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiysaiabg2da9maapeaabaGaamOzaiaacIcacaWG4bGaaiilaiaacwhacaGGSaaaleqabeqdcqGHRiI8aOGaaiyDaiaacEcacaGGPaGaamizaiaadIhaaaa@42F0@
This will be a turning point
for our initial problem if
dI(α)
dα
=0
|
α=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaiysaiaacIcacqaHXoqycaGGPaaabaGaamizaiabeg7aHbaacqGH9aqpcaaIWaWaaqGaaeaaaiaawIa7amaaBaaaleaacqaHXoqycqGH9aqpcaaIWaaabeaaaaa@441B@
So
dI
dα
=
∫
d
dα
f(x,u,u')
dx
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaiysaaqaaiaacsgacqaHXoqyaaGaeyypa0Zaa8qaaeaadaWcaaqaaiaadsgaaeaacaWGKbGaeqySdegaaiaacAgacaGGOaGaamiEaiaacYcacaGG1bGaaiilaiaacwhacaGGNaGaaiykaaWcbeqab0Gaey4kIipakiaadsgacaWG4baaaa@49F0@
dI(α)
dα
=
∫
(
∂f
∂x
∂x
∂α
+
∂f
∂u
∂u
∂α
+
∂f
∂u'
∂u'
∂α
)dx
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaiysaiaacIcacqaHXoqycaGGPaaabaGaamizaiabeg7aHbaacqGH9aqpdaWdbaqaaiaacIcadaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcaWG4baaaaWcbeqab0Gaey4kIipakmaalaaabaGaeyOaIyRaamiEaaqaaiabgkGi2kabeg7aHbaacqGHRaWkdaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcaGG1baaamaalaaabaGaeyOaIyRaaiyDaaqaaiabgkGi2kabeg7aHbaacqGHRaWkdaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcaGG1bGaai4jaaaadaWcaaqaaiabgkGi2kaacwhacaGGNaaabaGaeyOaIyRaeqySdegaaiaacMcacaWGKbGaamiEaaaa@6542@
with
∂u
∂α
=g(x),
∂u'
∂α
=g'(x),
∂x
∂α
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaGG1baabaGaeyOaIyRaeqySdegaaiabg2da9iaacEgacaGGOaGaamiEaiaacMcacaGGSaWaaSaaaeaacqGHciITcaGG1bGaai4jaaqaaiabgkGi2kabeg7aHbaacqGH9aqpcaGGNbGaai4jaiaacIcacaWG4bGaaiykaiaacYcadaWcaaqaaiabgkGi2kaadIhaaeaacqGHciITcqaHXoqyaaGaeyypa0JaaGimaaaa@5358@
So
dI(α)
dα
=
∫
(
∂f
∂u
g(x)+
∂f
∂u'
g'(x))dx
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaiysaiaacIcacqaHXoqycaGGPaaabaGaamizaiabeg7aHbaacqGH9aqpdaWdbaqaaiaacIcaaSqabeqaniabgUIiYdGcdaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcaGG1baaaiaacEgacaGGOaGaamiEaiaacMcacqGHRaWkdaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcaGG1bGaai4jaaaacaGGNbGaai4jaiaacIcacaWG4bGaaiykaiaacMcacaWGKbGaamiEaaaa@55BE@
Integrating the second term
by parts gives
dI(α)
dα
=
∫
(
∂f
∂u
g(x)−
d
dx
(
∂f
∂u'
)g(x))dx+
[
∂f
∂u'
g(x)]
x=a
x=b
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaiysaiaacIcacqaHXoqycaGGPaaabaGaamizaiabeg7aHbaacqGH9aqpdaWdbaqaaiaacIcaaSqabeqaniabgUIiYdGcdaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcaGG1baaaiaacEgacaGGOaGaamiEaiaacMcacqGHsisldaWcaaqaaiaadsgaaeaacaWGKbGaamiEaaaacaGGOaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaaiyDaiaacEcaaaGaaiykaiaacEgacaGGOaGaamiEaiaacMcacaGGPaGaamizaiaadIhacqGHRaWkcaGGBbWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaaiyDaiaacEcaaaGaai4zaiaacIcacaWG4bGaaiykaiaac2fadaqhaaWcbaGaamiEaiabg2da9iaadggaaeaacaWG4bGaeyypa0JaamOyaaaaaaa@6AA4@
But the 3rd term
is zero by construction, so
dI(α)
dα
=
∫
(
∂f
∂u
−
d
dx
(
∂f
∂u'
))g(x)dx
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaiysaiaacIcacqaHXoqycaGGPaaabaGaamizaiabeg7aHbaacqGH9aqpdaWdbaqaaiaacIcaaSqabeqaniabgUIiYdGcdaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcaGG1baaaiabgkHiTmaalaaabaGaamizaaqaaiaadsgacaWG4baaaiaacIcadaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcaGG1bGaai4jaaaacaGGPaGaaiykaiaacEgacaGGOaGaamiEaiaacMcacaWGKbGaamiEaaaa@5615@
But g(x) is arbitrary, so we
must have
∂f
∂y
−
d
dx
(
∂f
∂
y
x
)=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamyEaaaacqGHsisldaWcaaqaaiaadsgaaeaacaWGKbGaamiEaaaacaGGOaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamyEamaaBaaaleaacaWG4baabeaaaaGccaGGPaGaeyypa0JaaGimaaaa@4796@
dI(α)
dα
=0
|
α=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaiysaiaacIcacqaHXoqycaGGPaaabaGaamizaiabeg7aHbaacqGH9aqpcaaIWaWaaqGaaeaaaiaawIa7amaaBaaaleaacqaHXoqycqGH9aqpcaaIWaaabeaaaaa@441B@
After replaying u with y, as
required.
© Kevin Aylward 2000 - 2022
All rights reserved
The information on the page may be
reproduced
providing that this source is acknowledged.
Website last modified 1st January
2022
http://www.kevinaylward.co.uk/gr/index.html
www.kevinaylward.co.uk