General Relativity For
Tellytubbys
The Covariant Derivative
Sir Kevin Aylward B.Sc.,
Warden of the Kings Ale
Back
to the Contents section
The approach presented here
is one of the most direct routes possible. I plagiarized it from a number of
sources and added my bit of finesse to it i.e. no introduction to all that
superfluous mumbo jumbo that disappears without actually doing anything, but
confuses you like no bodies business. Most steps are shown in complete detail,
cos I remember I was totally lost when I first learned this stuff.
So, no beating
about the bush, onward with a quick derivation of the covariant derivative.
Section
1
Consider a vector
or tensor of rank 1, with components
V
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqySdegaaaaa@3899@
or in full notation
V=
V
α
e
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaiabg2da9iaabAfadaahaaWcbeqaaiabeg7aHbaakiaahwgadaWgaaWcbaGaeqySdegabeaaaaa@3D41@
The covariant derivative is
defined by deriving the second order tensor obtained by
∂V
∂
x
β
=
(
V
α
e
α
)
;β
=
∂
V
α
∂
x
β
e
α
+
V
α
∂
e
α
∂
x
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWHwbaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqOSdigaaaaakiabg2da9iaacIcacaqGwbWaaWbaaSqabeaacqaHXoqyaaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaGccaGGPaWaaSbaaSqaaiaacUdacqaHYoGyaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWGwbWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHYoGyaaaaaOGaaCyzamaaBaaaleaacqaHXoqyaeqaaOGaey4kaSIaaeOvamaaCaaaleqabaGaeqySdegaaOWaaSaaaeaacqGHciITcaWHLbWaaSbaaSqaaiabeg7aHbqabaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHYoGyaaaaaaaa@5F11@
No mystery at all here, we
just have to account for the fact that the basis vectors are not constant by
using the usual differentiation of the product rule. Note the ";" to
indicate the covariant derivative.
The last term containing the
derivative of the basis vector can clearly be expressed as a sum of the basis
vectors themselves. This will be written as:
e
α,β
=
∂
e
α
∂
x
β
=
Γ
μ
αβ
e
μ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaHXoqycaGGSaGaeqOSdigabeaakiabg2da9maalaaabaGaeyOaIyRaaCyzamaaBaaaleaacqaHXoqyaeqaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaeqOSdigaaaaakiabg2da9iabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabek7aIbqabaGccaWHLbWaaSbaaSqaaiabeY7aTbqabaaaaa@4F23@
Where the big funny R shape
is to be determined, and is called the Christoffel symbol of the 2nd
kind, and not to be confused with Close Encounters of the Third Kind, which was
crap, and almost as bad as ET it was.
Also note the new
introduction of "," to mean ordinary partial derivative.
So now the covariant
derivative can be written as:
∂V
∂
x
β
=
∂
V
α
∂
x
β
e
α
+
V
α
Γ
μ
αβ
e
μ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWHwbaabaGaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaaaakiabg2da9maalaaabaGaeyOaIyRaaeOvamaaCaaaleqabaGaeqySdegaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaaaakiaahwgadaWgaaWcbaGaeqySdegabeaakiabgUcaRiaabAfadaahaaWcbeqaaiabeg7aHbaakiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabek7aIbqabaGcdaahaaWcbeqaaaaakiaahwgadaWgaaWcbaGaeqiVd0gabeaaaaa@560E@
Letting μ−>α and α->μ in the second term gives
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeitaiaabwgacaqG0bGaaeiDaiaabMgacaqGUbGaae4zaiaabccacqaH8oqBcqGHsislcqGH+aGpcqaHXoqycaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiabeg7aHjaab2cacqGH+aGpcqaH8oqBcaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqGLbGaae4yaiaab+gacaqGUbGaaeizaiaabccacaqG0bGaaeyzaiaabkhacaqGTbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGZbaaaa@6131@
∂V
∂
x
β
=
∂
V
α
∂
x
β
e
α
+
V
μ
Γ
α
μβ
e
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWHwbaabaGaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaaaakiabg2da9maalaaabaGaeyOaIyRaaeOvamaaCaaaleqabaGaeqySdegaaaGcbaGaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaaaakiaahwgadaWgaaWcbaGaeqySdegabeaakiabgUcaRiaabAfadaahaaWcbeqaaiabeY7aTbaakiabfo5ahnaaCaaaleqabaGaeqySdegaaOWaaSbaaSqaaiabeY7aTjabek7aIbqabaGcdaahaaWcbeqaaaaakiaahwgadaWgaaWcbaGaeqySdegabeaaaaa@560E@
∂V
∂
x
β
=(
∂
V
α
∂
x
β
+
V
μ
Γ
α
μβ
)
e
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWHwbaabaGaeyOaIyRaamiEamaaBaaaleaacqaHYoGyaeqaaaaakiabg2da9iaacIcadaWcaaqaaiabgkGi2kaabAfadaahaaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kaadIhadaWgaaWcbaGaeqOSdigabeaaaaGccqGHRaWkcaqGwbWaaWbaaSqabeaacqaH8oqBaaGccqqHtoWrdaahaaWcbeqaaiabeg7aHbaakmaaBaaaleaacqaH8oqBcqaHYoGyaeqaaOWaaWbaaSqabeaaaaGccaGGPaGaaCyzamaaBaaaleaacqaHXoqyaeqaaaaa@54A4@
which means that the
covariant derivative of the vector, specified only by its components, can now
be expressed as
V
α
;β
=
V
α
,
β
+
V
μ
Γ
α
μβ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqySdegaaOWaaSbaaSqaaiaacUdacqaHYoGyaeqaaOGaeyypa0JaaeOvamaaCaaaleqabaGaeqySdegaaOGaaiilamaaBaaaleaacqaHYoGyaeqaaOGaey4kaSIaaeOvamaaCaaaleqabaGaeqiVd0gaaOGaeu4KdC0aaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqiVd0MaeqOSdigabeaaaaa@4BDE@
Which is indeed a tensor,
but we certainly don’t care one iota about proving that it is a tensor, some
other fool can do that.
Now lets consider
a second order tensor
T=
T
αγ
e
α
⊗
e
γ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCivaiabg2da9iaabsfadaahaaWcbeqaaiabeg7aHjabeo7aNbaakiaahwgadaWgaaWcbaGaeqySdegabeaakiabgEPielaahwgadaWgaaWcbaGaeq4SdCgabeaaaaa@43B8@
Then calculating
its covariant derivative by differentiating by parts, and using the above
results, gives
T
;ρ
=
T
αβ
,ρ
e
α
⊗
e
γ
+
T
αγ
e
α,ρ
⊗
e
γ
T
αγ
e
α
⊗
e
γ,ρ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCivamaaBaaaleaacaGG7aGaeqyWdihabeaakiabg2da9iaabsfadaahaaWcbeqaaiabeg7aHjabek7aIbaakmaaBaaaleaacaGGSaGaeqyWdihabeaakiaahwgadaWgaaWcbaGaeqySdegabeaakiabgEPielaahwgadaWgaaWcbaGaeq4SdCgabeaakiabgUcaRiaabsfadaahaaWcbeqaaiabeg7aHjabeo7aNbaakiaahwgadaWgaaWcbaGaeqySdeMaaiilaiabeg8aYbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeo7aNbqabaGccaqGubWaaWbaaSqabeaacqaHXoqycqaHZoWzaaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeo7aNjaacYcacqaHbpGCaeqaaaaa@66A5@
or, after expanding and
collecting up terms as we did above
T
αβ
;ρ
=
T
αβ
,ρ
+
T
μβ
Γ
α
μρ
+
T
αμ
Γ
β
μρ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOWaaSbaaSqaaiaacUdacqaHbpGCaeqaaOGaeyypa0JaaeivamaaCaaaleqabaGaeqySdeMaeqOSdigaaOWaaSbaaSqaaiaacYcacqaHbpGCaeqaaOGaey4kaSIaaeivamaaCaaaleqabaGaeqiVd0MaeqOSdigaaOGaeu4KdC0aaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqiVd0MaeqyWdihabeaakiabgUcaRiaabsfadaahaaWcbeqaaiabeg7aHjabeY7aTbaakiabfo5ahnaaCaaaleqabaGaeqOSdigaaOWaaSbaaSqaaiabeY7aTjabeg8aYbqabaaaaa@5D49@
And if your so
inclined, you can go and derive the covariant derivative for a downstairs index
as
T
α
β
;ρ
=
T
α
β
,ρ
+
T
μ
β
Γ
α
μρ
−
T
α
μ
Γ
μ
βρ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeivamaaCaaaleqabaGaeqySdegaaOWaaSbaaSqaaiabek7aIbqabaGcdaWgaaWcbaGaai4oaiabeg8aYbqabaGccqGH9aqpcaqGubWaaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqOSdigabeaakmaaBaaaleaacaGGSaGaeqyWdihabeaakiabgUcaRiaabsfadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGyaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqiVd0MaeqyWdihabeaakiabgkHiTiaabsfadaahaaWcbeqaaiabeg7aHbaakmaaBaaaleaacqaH8oqBaeqaaOGaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqOSdiMaeqyWdihabeaaaaa@5E2C@
Section 2
Next task my
Tellytubbys, is to derive the Christoffel symbols so that we can actually do
something.
To start off, the
Symmetry of
Γ
α
μβ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqiVd0MaeqOSdigabeaaaaa@3CB5@
is first shown
By definition
e
α
=
∂R
∂
x
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabMhacaqGGaGaaeizaiaabwgacaqGMbGaaeyAaiaab6gacaqGPbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaWHLbWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpdaWcaaqaaiabgkGi2kaahkfaaeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHXoqyaaaaaaaa@4C8B@
,
back to the other pages for refresher if
you've forgotten this
So
e
α
,β
=
∂
∂
x
β
∂R
∂
x
α
=
∂
∂
x
α
∂R
∂
x
β
=
e
β,α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4uaiaab+gacaqGGaGaaCyzamaaBaaaleaacqaHXoqyaeqaaOWaaSbaaSqaaiaacYcacqaHYoGyaeqaaOGaeyypa0ZaaSaaaeaacqGHciITaeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHYoGyaaaaaOWaaSaaaeaacqGHciITcaWHsbaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqySdegaaaaakiabg2da9maalaaabaGaeyOaIylabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqySdegaaaaakmaalaaabaGaeyOaIyRaaCOuaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiabek7aIbaaaaGccqGH9aqpcaWHLbWaaSbaaSqaaiabek7aIjaacYcacqaHXoqyaeqaaaaa@5E3B@
Thus
e
α,β
is symmetrical wrt α and β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeivaiaabIgacaqG1bGaae4CaiaabccacaWHLbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaOGaaeiiaiaabMgacaqGZbGaaeiiaiaabohacaqG5bGaaeyBaiaab2gacaqGLbGaaeiDaiaabkhacaqGPbGaae4yaiaabggacaqGSbGaaeiiaiaabEhacaqGYbGaaeiDaiaabccacqaHXoqycaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiabek7aIbaa@583C@
From our previous result
above,
e
α,β
=
Γ
μ
αβ
e
μ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaHXoqycaGGSaGaeqOSdigabeaakiabg2da9iabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabek7aIbqabaGccaWHLbWaaSbaaSqaaiabeY7aTbqabaaaaa@45A9@
then
e
β,α
=
Γ
μ
βα
e
μ
=
e
α,β
=
Γ
μ
αβ
e
μ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaHYoGycaGGSaGaeqySdegabeaakiabg2da9iabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabek7aIjabeg7aHbqabaGccaWHLbWaaSbaaSqaaiabeY7aTbqabaGccqGH9aqpcaWHLbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaOGaeyypa0Jaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaahwgadaWgaaWcbaGaeqiVd0gabeaaaaa@566E@
Γ
μ
βα
=
Γ
μ
αβ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqOSdiMaeqySdegabeaakiabg2da9iabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabek7aIbqabaaaaa@4486@
is also symmetrical wrt
alpha and beta
Laa Laa now writes from the
above
e
α,β
.
e
λ
=
Γ
μ
αβ
e
μ
.
e
λ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaHXoqycaGGSaGaeqOSdigabeaakiaac6cacaWHLbWaaSbaaSqaaiabeU7aSbqabaGccqGH9aqpcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaaCyzamaaBaaaleaacqaH8oqBaeqaaOGaaiOlaiaahwgadaWgaaWcbaGaeq4UdWgabeaaaaa@4CBD@
or
Γ
μ
αβ
e
μ
.
e
λ
=
e
α,β
.
e
λ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaahwgadaWgaaWcbaGaeqiVd0gabeaakiaac6cacaWHLbWaaSbaaSqaaiabeU7aSbqabaGccqGH9aqpcaWHLbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaOGaaiOlaiaahwgadaWgaaWcbaGaeq4UdWgabeaaaaa@4CBD@
g
μλ
Γ
μ
αβ
=
e
α,β
.
e
λ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacqaH8oqBcqaH7oaBaeqaaOGaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9iaahwgadaWgaaWcbaGaeqySdeMaaiilaiabek7aIbqabaGccaGGUaGaaCyzamaaBaaaleaacqaH7oaBaeqaaaaa@4AE5@
g
λν
g
μλ
Γ
μ
αβ
=
g
λν
[
e
α,β
.
e
λ
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCaaaleqabaGaeq4UdWMaeqyVd4gaaOGaam4zamaaBaaaleaacqaH8oqBcqaH7oaBaeqaaOGaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9iaadEgadaahaaWcbeqaaiabeU7aSjabe27aUbaakiaacUfacaWHLbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaOGaaiOlaiaahwgadaWgaaWcbaGaeq4UdWgabeaakiaac2faaaa@55CD@
g
ν
μ
Γ
μ
αβ
=
g
λν
[
e
α,β
.
e
λ
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCaaaleqabaGaeqyVd4gaaOWaaSbaaSqaaiabeY7aTbqabaGccqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyypa0Jaam4zamaaCaaaleqabaGaeq4UdWMaeqyVd4gaaOGaai4waiaahwgadaWgaaWcbaGaeqySdeMaaiilaiabek7aIbqabaGccaGGUaGaaCyzamaaBaaaleaacqaH7oaBaeqaaOGaaiyxaaaa@5179@
Γ
ν
αβ
=
g
λν
[
e
α,β
.
e
λ
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH9oGBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9iaadEgadaahaaWcbeqaaiabeU7aSjabe27aUbaakiaacUfacaWHLbWaaSbaaSqaaiabeg7aHjaacYcacqaHYoGyaeqaaOGaaiOlaiaahwgadaWgaaWcbaGaeq4UdWgabeaakiaac2faaaa@4CB4@
and due to the symmetry
found above, we can also write
Γ
ν
αβ
=
g
λν
[
e
β,α
.
e
λ
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH9oGBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9iaadEgadaahaaWcbeqaaiabeU7aSjabe27aUbaakiaacUfacaWHLbWaaSbaaSqaaiabek7aIjaacYcacqaHXoqyaeqaaOGaaiOlaiaahwgadaWgaaWcbaGaeq4UdWgabeaakiaac2faaaa@4CB4@
So adding these last two
gives
Γ
ν
αβ
=
1
2
g
νλ
[
e
α,β
.
e
λ
+
e
β,α
.
e
λ
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH9oGBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaam4zamaaCaaaleqabaGaeqyVd4Maeq4UdWgaaOGaai4waiaahwgadaWgaaWcbaGaeqySdeMaaiilaiabek7aIbqabaGccaGGUaGaaCyzamaaBaaaleaacqaH7oaBaeqaaOGaaeiiaiabgUcaRiaahwgadaWgaaWcbaGaeqOSdiMaaiilaiabeg7aHbqabaGccaGGUaGaaCyzamaaBaaaleaacqaH7oaBaeqaaOGaaeyxaiaabccaaaa@5900@
So, by re-differentiating,
the following line can immediately be seen to be correct, don’t you just love
these ones, ah.
Γ
ν
αβ
=
1
2
g
νλ
[
(
e
α
.
e
λ
)
,β
+
(
e
β
.
e
λ
)
,α
-
e
α
.
e
λ
,β
-
e
β
.
e
λ
,α
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH9oGBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaam4zamaaCaaaleqabaGaeqyVd4Maeq4UdWgaaOGaai4waiaacIcacaWHLbWaaSbaaSqaaiabeg7aHbqabaGccaGGUaGaaCyzamaaBaaaleaacqaH7oaBaeqaaOGaaeykamaaBaaaleaacaqGSaGaeqOSdigabeaakiaabccacqGHRaWkcaGGOaGaaCyzamaaBaaaleaacqaHYoGyaeqaaOGaaiOlaiaahwgadaWgaaWcbaGaeq4UdWgabeaakiaabMcadaWgaaWcbaGaaeilaiabeg7aHbqabaGccaqGGaGaaeylaiaahwgadaWgaaWcbaGaeqySdegabeaakiaac6cacaWHLbWaaSbaaSqaaiabeU7aSbqabaGcdaWgaaWcbaGaaeilaiabek7aIbqabaGccaqGGaGaaeylaiaahwgadaWgaaWcbaGaeqOSdigabeaakiaac6cacaWHLbWaaSbaaSqaaiabeU7aSbqabaGcdaWgaaWcbaGaaeilaiabeg7aHbqabaGccaqGDbGaaeiiaaaa@7066@
Γ
ν
αβ
=
1
2
g
νλ
[
g
αλ
,β
+
g
βλ
,α
-
e
α
.
e
λ
,β
-
e
β
.
e
λ
,α
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH9oGBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaam4zamaaCaaaleqabaGaeqyVd4Maeq4UdWgaaOGaai4waiaadEgadaWgaaWcbaGaeqySdeMaeq4UdWgabeaakmaaBaaaleaacaqGSaGaeqOSdigabeaakiaabccacqGHRaWkcaWGNbWaaSbaaSqaaiabek7aIjabeU7aSbqabaGcdaWgaaWcbaGaaeilaiabeg7aHbqabaGccaqGGaGaaeylaiaahwgadaWgaaWcbaGaeqySdegabeaakiaac6cacaWHLbWaaSbaaSqaaiabeU7aSbqabaGcdaWgaaWcbaGaaeilaiabek7aIbqabaGccaqGGaGaaeylaiaahwgadaWgaaWcbaGaeqOSdigabeaakiaac6cacaWHLbWaaSbaaSqaaiabeU7aSbqabaGcdaWgaaWcbaGaaeilaiabeg7aHbqabaGccaqGDbGaaeiiaaaa@6A06@
Γ
ν
αβ
=
1
2
g
νλ
[
g
αλ
,β
+
g
βλ
,α
-
e
α
.
e
β,λ
-
e
β
.
e
α
,λ
] , using the result
e
λ
,α
=
e
α
,λ
again
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH9oGBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaam4zamaaCaaaleqabaGaeqyVd4Maeq4UdWgaaOGaai4waiaadEgadaWgaaWcbaGaeqySdeMaeq4UdWgabeaakmaaBaaaleaacaqGSaGaeqOSdigabeaakiaabccacqGHRaWkcaWGNbWaaSbaaSqaaiabek7aIjabeU7aSbqabaGcdaWgaaWcbaGaaeilaiabeg7aHbqabaGccaqGGaGaaeylaiaahwgadaWgaaWcbaGaeqySdegabeaakiaac6cacaWHLbWaaSbaaSqaaiabek7aIjaacYcacqaH7oaBaeqaaOGaaeiiaiaab2cacaWHLbWaaSbaaSqaaiabek7aIbqabaGccaGGUaGaaCyzamaaBaaaleaacqaHXoqyaeqaaOWaaSbaaSqaaiaabYcacqaH7oaBaeqaaOGaaeyxaiaabccacaqGSaGaaeiiaiaabwhacaqGZbGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzaiaabohacaqG1bGaaeiBaiaabshacaqGGaGaaCyzamaaBaaaleaacqaH7oaBaeqaaOWaaSbaaSqaaiaabYcacqaHXoqyaeqaaOGaeyypa0JaaCyzamaaBaaaleaacqaHXoqyaeqaaOWaaSbaaSqaaiaabYcacqaH7oaBaeqaaOGaaeyyaiaabEgacaqGHbGaaeyAaiaab6gaaaa@8A89@
Γ
ν
αβ
=
1
2
g
νλ
[
g
αλ
,β
+
g
βλ
,α
-(
e
α
.
e
β
)
,
λ
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH9oGBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaam4zamaaCaaaleqabaGaeqyVd4Maeq4UdWgaaOGaai4waiaadEgadaWgaaWcbaGaeqySdeMaeq4UdWgabeaakmaaBaaaleaacaqGSaGaeqOSdigabeaakiaabccacqGHRaWkcaWGNbWaaSbaaSqaaiabek7aIjabeU7aSbqabaGcdaWgaaWcbaGaaeilaiabeg7aHbqabaGccaqGGaGaaeylaiaabIcacaWHLbWaaSbaaSqaaiabeg7aHbqabaGccaGGUaGaaCyzamaaBaaaleaacqaHYoGyaeqaaOGaaeiiaiaabMcadaWgaaWcbaGaaeilaaqabaGcdaWgaaWcbaGaeq4UdWgabeaakiaab2facaqGGaaaaa@6210@
Γ
ν
αβ
=
1
2
g
νλ
[
g
αλ
,β
+
g
βλ
,α
-
g
αβ
,λ
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aaWbaaSqabeaacqaH9oGBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaam4zamaaCaaaleqabaGaeqyVd4Maeq4UdWgaaOGaai4waiaadEgadaWgaaWcbaGaeqySdeMaeq4UdWgabeaakmaaBaaaleaacaqGSaGaeqOSdigabeaakiaabccacqGHRaWkcaWGNbWaaSbaaSqaaiabek7aIjabeU7aSbqabaGcdaWgaaWcbaGaaeilaiabeg7aHbqabaGccaqGGaGaaeylaiaadEgadaWgaaWcbaGaeqySdeMaeqOSdigabeaakmaaBaaaleaacaqGSaGaeq4UdWgabeaakiaab2facaqGGaaaaa@5E08@
© Kevin Aylward 2000 - 2022
All rights reserved
The information on the page may be
reproduced
providing that this source is acknowledged.
Website last modified 1st May
2022
http://www.kevinaylward.co.uk/gr/index.html
www.kevinaylward.co.uk