General Relativity For
Tellytubbys
Einstein Curvature
Sir Kevin Aylward B.Sc.,
Warden of the Kings Ale
Back
to the Contents section
Overview
This section gets to grips
with the fundamental tensor of G.R.
The fundamental postulate is that the stress-energy tensor is equal to a tensor
that measures geodesic deviation. This postulate is motivated by the
equivalence of gravitational and inertial mass, i.e. all objects fall with the
same acceleration in the same gravitational field. This is normally expressed
as mass determines the shape of your girlfriend's tits and arse, and then that
shape tells one if one wants to move your hands in that general area. This
seems so obvious, in hindsight, that it makes you wonder why it took Einstein,
genius that he was, some bloody 10 years to figure it out.
The stress energy tensor
satisfies statements of conservation of momentum and energy
∇T=
T
αβ;β
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaaCivaiabg2da9iaabsfadaWgaaWcbaGaeqySdeMaeqOSdiMaai4oaiabek7aIbqabaGccqGH9aqpcaaIWaaaaa@41CA@
So, obviously we need a
geodesic deviation tensor that also satisfies this equation. Riemann by itself
is a bit big being a 4-rank tensor, but fortunately it has so many symmetries
that a contracted version of Riemann does the job no sweat, with no loss of
geodesic deviation information.
First, the result will be
stated, then we'll do some more hand waving to derive the results.
G
αβ
=
R
αβ
−
1
2
R
g
αβ
+λ
g
αβ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyypa0JaamOuamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGsbGaam4zamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaey4kaSIaeq4UdWMaam4zamaaBaaaleaacqaHXoqycqaHYoGyaeqaaaaa@4E24@
Where:
R
αβ
=
R
μ
αμβ
and R=
R
α
α
=
g
αβ
R
αβ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyypa0JaamOuamaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabeY7aTjabek7aIbqabaGccaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaadkfacqGH9aqpcaWGsbWaaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqySdegabeaakiabg2da9iaadEgadaahaaWcbeqaaiabeg7aHjabek7aIbaakiaadkfadaWgaaWcbaGaeqySdeMaeqOSdigabeaaaaa@5744@
i.e.
G
αβ;β
=
(
R
αβ
−
1
2
R
g
αβ
+λ
g
αβ
)
;β
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBaaaleaaieaacaWFXoGaeqOSdiMaa83oaiabek7aIbqabaGccqGH9aqpcaGGOaGaamOuamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGsbGaam4zamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaey4kaSIaeq4UdWMaam4zamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaaiykamaaBaaaleaacaGG7aGaeqOSdigabeaakiabg2da9iaaicdaaaa@55D9@
So that
G
αβ
=
8πG
c
4
T
αβ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyypa0ZaaSaaaeaacaaI4aGaeqiWdaNaam4raaqaaiaadogadaahaaWcbeqaaiaaisdaaaaaaOGaamivamaaBaaaleaacqaHXoqycqaHYoGyaeqaaaaa@44B9@
where the 8, G, pi, are
fudge factors to make the equation agree with Newton in the low field, low
velocity limit. Note the two G's to confuse you. The one without the indexes is
the Newton gravitational constant.
The G tensor is called the
Einstein tensor, but he was not the first to derive it. The lambda term is the
"greatest blunder of my life" term i.e. the cosmological constant,
which was first absent then added then removed then added, and so it goes on
and on…
Construction
of The Einstein Tensor
From the Riemann section, we
have the Bianchi Identity:
R
a
bcd;e
+
R
a
bec;d
+
R
a
bde;c
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgacaGG7aGaamyzaaqabaGccqGHRaWkcaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGLbGaam4yaiaacUdacaWGKbaabeaakiabgUcaRiaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadsgacaWGLbGaai4oaiaadogaaeqaaOGaeyypa0JaaGimaaaa@4D19@
Now define the Ricci 2nd
Rank Tensor and Ricci Scalar, obtained by contracting the Riemann Tensor:
R
bd
=
R
c
bcd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGIbGaamizaaqabaGccqGH9aqpcaWGsbWaaWbaaSqabeaacaWGJbaaaOWaaSbaaSqaaiaadkgacaWGJbGaamizaaqabaaaaa@3EB1@
R=
R
d
d
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2da9iaadkfadaahaaWcbeqaaiaadsgaaaGcdaWgaaWcbaGaamizaaqabaaaaa@3ADD@
Contracting the Riemann
Bianchi Identity by setting a=c gets us:
R
c
bcd;e
+
R
c
bec;d
+
R
c
bde;c
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaam4yaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgacaGG7aGaamyzaaqabaGccqGHRaWkcaWGsbWaaWbaaSqabeaacaWGJbaaaOWaaSbaaSqaaiaadkgacaWGLbGaam4yaiaacUdacaWGKbaabeaakiabgUcaRiaadkfadaahaaWcbeqaaiaadogaaaGcdaWgaaWcbaGaamOyaiaadsgacaWGLbGaai4oaiaadogaaeqaaOGaeyypa0JaaGimaaaa@4D1F@
R
bd;e
−
R
be;d
+
R
c
bde;c
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaWGIbGaamizaiaacUdacaWGLbaabeaakiabgkHiTiaadkfadaWgaaWcbaGaamOyaiaadwgacaGG7aGaamizaaqabaGccqGHRaWkcaWGsbWaaWbaaSqabeaacaWGJbaaaOWaaSbaaSqaaiaadkgacaWGKbGaamyzaiaacUdacaWGJbaabeaakiabg2da9iaaicdaaaa@491C@
Contracting on b and d
R
d
d;e
−
R
d
e;d
+
R
cd
de;c
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGKbGaai4oaiaadwgaaeqaaOGaeyOeI0IaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbGaai4oaiaadsgaaeqaaOGaey4kaSIaamOuamaaCaaaleqabaGaam4yaiaadsgaaaGcdaWgaaWcbaGaamizaiaadwgacaGG7aGaam4yaaqabaGccqGH9aqpcaaIWaaaaa@4990@
But by the antisymmetry of
the 1st 2 indexes of Riemann
R
d
d;e
−
R
d
e;d
−
R
dc
de;c
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGKbGaai4oaiaadwgaaeqaaOGaeyOeI0IaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbGaai4oaiaadsgaaeqaaOGaeyOeI0IaamOuamaaCaaaleqabaGaamizaiaadogaaaGcdaWgaaWcbaGaamizaiaadwgacaGG7aGaam4yaaqabaGccqGH9aqpcaaIWaaaaa@499B@
R
d
d;e
−
R
d
e;d
−
R
c
e;c
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGKbGaai4oaiaadwgaaeqaaOGaeyOeI0IaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbGaai4oaiaadsgaaeqaaOGaeyOeI0IaamOuamaaCaaaleqabaGaam4yaaaakmaaBaaaleaacaWGLbGaai4oaiaadogaaeqaaOGaeyypa0JaaGimaaaa@47C9@
But the last terms can be
seen to be dummy indexes and so,
R
d
d;e
−
R
d
e;d
−
R
d
e;d
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGKbGaai4oaiaadwgaaeqaaOGaeyOeI0IaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbGaai4oaiaadsgaaeqaaOGaeyOeI0IaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbGaai4oaiaadsgaaeqaaOGaeyypa0JaaGimaaaa@47CB@
R
d
d;e
−2
R
d
e;d
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGKbGaai4oaiaadwgaaeqaaOGaeyOeI0IaaGOmaiaadkfadaahaaWcbeqaaiaadsgaaaGcdaWgaaWcbaGaamyzaiaacUdacaWGKbaabeaakiabg2da9iaaicdaaaa@42DB@
R
;e
−2
R
d
e;d
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBaaaleaacaGG7aGaamyzaaqabaGccqGHsislcaaIYaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbGaai4oaiaadsgaaeqaaOGaeyypa0JaaGimaaaa@40D2@
or
R
d
e;d
−
1
2
R
;e
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbGaai4oaiaadsgaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGsbWaaSbaaSqaaiaacUdacaWGLbaabeaakiabg2da9iaaicdaaaa@419D@
R
d
e;d
−
1
2
δ
e
d
R
;d
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbGaai4oaiaadsgaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacqaH0oazdaWgaaWcbaGaamyzaaqabaGcdaahaaWcbeqaaiaadsgaaaGccaWGsbWaaSbaaSqaaiaacUdacaWGKbaabeaakiabg2da9iaaicdaaaa@4581@
R
d
e;d
−
1
2
δ
e
d
R
;d
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbGaai4oaiaadsgaaeqaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacqaH0oazdaWgaaWcbaGaamyzaaqabaGcdaahaaWcbeqaaiaadsgaaaGccaWGsbWaaSbaaSqaaiaacUdacaWGKbaabeaakiabg2da9iaaicdaaaa@4581@
(
R
d
e
−
1
2
δ
e
d
R)
;d
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkfadaahaaWcbeqaaiaadsgaaaGcdaWgaaWcbaGaamyzaaqabaGccqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiabes7aKnaaBaaaleaacaWGLbaabeaakmaaCaaaleqabaGaamizaaaakiaadkfacaGGPaWaaSbaaSqaaiaacUdacaWGKbaabeaakiabg2da9iaaicdaaaa@4532@
g
ae
(
R
d
e
−
1
2
δ
e
d
R)
;d
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCaaaleqabaGaamyyaiaadwgaaaGccaGGOaGaamOuamaaCaaaleqabaGaamizaaaakmaaBaaaleaacaWGLbaabeaakiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaeqiTdq2aaSbaaSqaaiaadwgaaeqaaOWaaWbaaSqabeaacaWGKbaaaOGaamOuaiaacMcadaWgaaWcbaGaai4oaiaadsgaaeqaaOGaeyypa0JaaGimaaaa@4825@
(
R
da
−
1
2
g
da
R)
;d
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadkfadaahaaWcbeqaaiaadsgacaWGHbaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGNbWaaWbaaSqabeaacaWGKbGaamyyaaaakiaadkfacaGGPaWaaSbaaSqaaiaacUdacaWGKbaabeaakiabg2da9iaaicdaaaa@4405@
hence defining the Einstein
Tensor as:
G
ab
=
R
ab
−
1
2
g
ab
R+λ
g
ab
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaCaaaleqabaGaamyyaiaadkgaaaGccqGH9aqpcaWGsbWaaWbaaSqabeaacaWGHbGaamOyaaaakiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaam4zamaaCaaaleqabaGaamyyaiaadkgaaaGccaWGsbGaey4kaSIaeq4UdWMaam4zamaaCaaaleqabaGaamyyaiaadkgaaaaaaa@485C@
one has
G
ab
;a
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaCaaaleqabaGaamyyaiaadkgaaaGcdaWgaaWcbaGaai4oaiaadggaaeqaaOGaeyypa0JaaGimaaaa@3C5F@
Where the metric tensor has
been included as the Einstein fudge factor, as its covariant derivative is
identically zero.
© Kevin Aylward 2000 - 2015
All rights reserved
The information on the page may be
reproduced
providing that this source is acknowledged.
Website last modified 31st May
2013
http://www.kevinaylward.co.uk/gr/index.html
www.kevinaylward.co.uk