Relativistic Mass-Energy Equation
Without
the LT
Sir
Kevin Aylward B.Sc., Warden of the King’s Ale
Back to the Contents section
Overview
The following constructs a derivation of relativistic
mass without the Lorentz Transformation.
Derivation
So, let’s start with the well-known old stuff by the
man who stood on the jolly green giant, to wit the relations of energy and
momentum, thus:
F=
d(mv)
dt
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabg2da9maalaaabaGaamizaiaacIcacaWGTbGaamODaiaacMcaaeaacaWGKbGaamiDaaaaaaa@3DC8@
-
(1)
KE=
∫
F
dl
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadweacqGH9aqpdaWdbaqaaiaadAeaaSqabeqaniabgUIiYdGccaWGKbGaamiBaaaa@3D1F@
-
(2)
If one assumes that the kinetic energy of a moving
body is determined by any arbitrary function of velocity, and simply allow the Guinness
mass to vary with velocity we have, in very general terms:
KE=
k
2
m(v)+α
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadweacqGH9aqpcaWGRbWaaWbaaSqabeaacaaIYaaaaOGaamyBaiaacIcacaWG2bGaaiykaiabgUcaRiabeg7aHbaa@4020@
-
(3)
Where m(v), the mass, is an arbitrary function of
velocity, k2 and α are
arbitrary constants.
Therefore one can immediately write:
k
2
m(v)+α=
∫
d(mv)
dt
dl
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCaaaleqabaGaaGOmaaaakiaad2gacaGGOaGaamODaiaacMcacqGHRaWkcqaHXoqycqGH9aqpdaWdbaqaamaalaaabaGaamizaiaacIcacaWGTbGaamODaiaacMcaaeaacaWGKbGaamiDaaaaaSqabeqaniabgUIiYdGccaWGKbGaamiBaaaa@4885@
And since
dl
dt
=v
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaamiBaaqaaiaadsgacaWG0baaaiabg2da9iaadAhaaaa@3BA2@
, one can write
k
2
m(v)+α=
∫
v
d(mv)
dt
dt
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCaaaleqabaGaaGOmaaaakiaad2gacaGGOaGaamODaiaacMcacqGHRaWkcqaHXoqycqGH9aqpdaWdbaqaaiaadAhadaWcaaqaaiaadsgacaGGOaGaamyBaiaadAhacaGGPaaabaGaamizaiaadshaaaaaleqabeqdcqGHRiI8aOGaamizaiaadshaaaa@4988@
Differentiating both sides of the equation w.r.t:
k
2
m
'
(v)=v
d(mv)
dt
,
m
'
=
d(m)
dt
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCaaaleqabaGaaGOmaaaakiaad2gadaahaaWcbeqaaiaacEcaaaGccaGGOaGaamODaiaacMcacqGH9aqpcaWG2bWaaSaaaeaacaWGKbGaaiikaiaad2gacaWG2bGaaiykaaqaaiaadsgacaWG0baaaiaacYcacaWGTbWaaWbaaSqabeaacaGGNaaaaOGaeyypa0ZaaSaaaeaacaWGKbGaaiikaiaad2gacaGGPaaabaGaamizaiaadshaaaaaaa@4CB2@
k
2
m
'
=
v
2
m
'
+v
v
'
m,
v
'
=
dv
dt
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCaaaleqabaGaaGOmaaaakiaad2gadaahaaWcbeqaaiaacEcaaaGccqGH9aqpcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaamyBamaaCaaaleqabaGaai4jaaaakiabgUcaRiaadAhacaWG2bWaaWbaaSqabeaacaGGNaaaaOGaamyBaiaacYcacaWG2bWaaWbaaSqabeaacaGGNaaaaOGaeyypa0ZaaSaaaeaacaWGKbGaamODaaqaaiaadsgacaWG0baaaaaa@4A69@
k
2
m
'
(1−
v
2
k
2
)=v
v
'
m
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCaaaleqabaGaaGOmaaaakiaad2gadaahaaWcbeqaaiaacEcaaaGccaGGOaGaaGymaiabgkHiTmaalaaabaGaamODamaaCaaaleqabaGaaGOmaaaaaOqaaiaadUgadaahaaWcbeqaaiaaikdaaaaaaOGaaiykaiabg2da9iaadAhacaWG2bWaaWbaaSqabeaacaGGNaaaaOGaamyBaaaa@453E@
m
'
m
=
v
v
'
k
2
(1−
v
2
k
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGTbWaaWbaaSqabeaacaGGNaaaaaGcbaGaamyBaaaacqGH9aqpdaWcaaqaaiaadAhacaWG2bWaaWbaaSqabeaacaGGNaaaaaGcbaGaam4AamaaCaaaleqabaGaaGOmaaaakiaacIcacaaIXaGaeyOeI0YaaSaaaeaacaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGaam4AamaaCaaaleqabaGaaGOmaaaaaaGccaGGPaaaaaaa@455E@
This equation can be immediately integrated as the
R.H.S. is an exact differential:
ln(βm)=−
1
2
ln(1−
v
2
k
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac6gacaGGOaGaeqOSdiMaamyBaiaacMcacqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiGacYgacaGGUbGaaiikaiaaigdacqGHsisldaWcaaqaaiaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaWGRbWaaWbaaSqabeaacaaIYaaaaaaakiaacMcaaaa@47E5@
MathType@MTEF@5@5@+=feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35D5@
∴m=
m
o
(1−
v
2
k
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyinIWLaamyBaiabg2da9maalaaabaGaamyBamaaBaaaleaacaWGVbaabeaaaOqaamaakaaabaGaaiikaiaaigdacqGHsisldaWcaaqaaiaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaWGRbWaaWbaaSqabeaacaaIYaaaaaaakiaacMcaaSqabaaaaaaa@4234@
-
(4)
So there you have it, no sweat at all. The form of the
classic relativistic mass equation, without all that high-brow space-time
posturing taken by some of those people that think they're clever, but are
really just a pain in the arse to those of us that are.
Although it is not possible to show that k is c, the
speed of light, in this derivation, we know its so cos Einstein said so, so it
must be true.
And substituting back into to - (3), with suitable
initial conditions will give:
KE=
k
2
(m−
m
o
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadweacqGH9aqpcaWGRbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaad2gacqGHsislcaWGTbWaaSbaaSqaaiaad+gaaeqaaOGaaiykaaaa@3FAC@
or
KE=
k
2
Δm
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaadweacqGH9aqpcaWGRbWaaWbaaSqabeaacaaIYaaaaOGaeuiLdqKaamyBaaaa@3CB0@
And, cos we need this later for the "GR for
Teletubbies" section we rearrange, with k=c:
m
c
2
=KE+
m
0
c
2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaadogadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWGlbGaamyraiabgUcaRiaad2gadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaWbaaSqabeaacaaIYaaaaaaa@3FD7@
and with
γ=
1
(1−
v
2
k
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaeyypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaGGOaGaaGymaiabgkHiTmaalaaabaGaamODamaaCaaaleqabaGaaGOmaaaaaOqaaiaadUgadaahaaWcbeqaaiaaikdaaaaaaOGaaiykaaWcbeaaaaaaaa@404A@
then:
m
0
γ
c
2
=KE+
m
0
c
2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBaaaleaacaaIWaaabeaakiabeo7aNjaadogadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWGlbGaamyraiabgUcaRiaad2gadaWgaaWcbaGaaGimaaqabaGccaWGJbWaaWbaaSqabeaacaaIYaaaaaaa@426E@
Now define
the total energy, E by:
E
t
=
m
0
γ
c
2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWG0baabeaakiabg2da9iaad2gadaWgaaWcbaGaaGimaaqabaGccqaHZoWzcaWGJbWaaWbaaSqabeaacaaIYaaaaaaa@3E2E@
So that
E
t
=KE+
m
0
c
2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGGipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaaleaacaWG0baabeaakiabg2da9iaadUeacaWGfbGaey4kaSIaamyBamaaBaaaleaacaaIWaaabeaakiaadogadaahaaWcbeqaaiaaikdaaaaaaa@3F03@
Identifying a rest energy term and a kinetic energy
term. This bit is all rather a bit waffley really, but there you go…
And as a note, this concept of mass variation is
really a little dated. Modern SR does not consider the mass to vary. Mass is an
invariant. Momentum is redefined to achieve the same, but much more general
effect as the result shown here.
Summary
From these equations, all other relativistic equations
can be derived, such as length contraction and time dilation. This direct
derivation of the Einstein equation makes alternative theories quite dubious,
in as much that the most fundamental, basic laws of Physics would have to be
replaced, i.e. the definitions of Energy and Momentum.
© Kevin Aylward 2000 - 2022
All rights reserved
The information on the page may be
reproduced
providing that this source is acknowledged.
Website last modified 1st January
2022
http://www.kevinaylward.co.uk/gr/index.html
www.kevinaylward.co.uk