General Relativity For
Tellytubbys
Geodesic Equation
Sir Kevin Aylward B.Sc., Warden of the Kings
Ale
Back
to the Contents section
Overview
This section follows on from
the section on Euler-Langrange equations. The task here is to find the geodesic
equation that describes straight lines in general.
Geodesic
Equation
I do hope you recall from
the other pages that, one form of the Euler-Langrange equation is
∂f
∂
x
α
−
d
dλ
(
∂f
∂
x
˙
α
)=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqySdegaaaaakiabgkHiTmaalaaabaGaamizaaqaaiaadsgacqaH7oaBaaGaaiikamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kqadIhagaGaamaaCaaaleqabaGaeqySdegaaaaakiaacMcacqGH9aqpcaaIWaaaaa@4ACD@
I=
∫
f(
x
α
,
x
˙
α
,λ)
dλ , where
x
˙
=
dx
dλ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2da9maapeaabaGaaiOzaiaacIcacaWG4bWaaWbaaSqabeaacqaHXoqyaaGccaGGSaGabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaGccaGGSaGaeq4UdWMaaiykaaWcbeqab0Gaey4kIipakiaadsgacqaH7oaBcaqGGaGaaeilaiaabccacaqG3bGaaeiAaiaabwgacaqGYbGaaeyzaiaabccaceWG4bGbaiaacqGH9aqpdaWcaaqaaiaadsgacaWG4baabaGaamizaiabeU7aSbaaaaa@5551@
are the conditions that
finds a local minimum, maximums or inflection point of an integral of f.
because that was indeed a
waste of brain power, we're going to ignore that just for now, and first derive
the geodesic equation directly. This is so we can get a better handle on what's
going on from more then one point of view.
Geodesic
Equation Method 1
Consider a Tellytubby
playing on a slide chute, i.e. undergoing acceleration
a=
dv
dτ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyaiabg2da9maalaaabaGaamizaiaahAhaaeaacaWGKbGaeqiXdqhaaaaa@3C8A@
If there are no net forces acting on Po (this is the deeper meaning bit of G.R.) in order to
achieve this acceleration then we have, from Newton's laws
ma=
dv
dτ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaahggacqGH9aqpdaWcaaqaaiaadsgacaWH2baabaGaamizaiabes8a0baacqGH9aqpcaaIWaaaaa@3F3C@
In our newly acquired, very
impressive tensor notation, this can be written, noting that derivatives go
over to covariant derivatives always, as
dv
dτ
=
∇
v
V≡
V
α
;β
V
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaaCODaaqaaiaadsgacqaHepaDaaGaeyypa0Jaey4bIe9aaSbaaSqaaiaahAhaaeqaaOGaaCOvaiabggMi6kaabAfadaahaaWcbeqaaiabeg7aHbaakmaaBaaaleaacaGG7aGaeqOSdigabeaakiaabAfadaahaaWcbeqaaiabek7aIbaaaaa@48EF@
because,
V
α
,β
V
β
=
∂
V
α
∂
x
β
∂
x
β
∂τ
=
d
V
α
dτ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqySdegaaOWaaSbaaSqaaiaacYcacqaHYoGyaeqaaOGaaeOvamaaCaaaleqabaGaeqOSdigaaOGaeyypa0ZaaSaaaeaacqGHciITcaqGwbWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHYoGyaaaaaOWaaSaaaeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacqGHciITcqaHepaDaaGaeyypa0ZaaSaaaeaacaWGKbGaaeOvamaaCaaaleqabaGaeqySdegaaaGcbaGaamizaiabes8a0baaaaa@5613@
and noting the obvious
extension to the ";" is required
So, to continue with
V
α
;β
V
β
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqySdegaaOWaaSbaaSqaaiaacUdacqaHYoGyaeqaaOGaaeOvamaaCaaaleqabaGaeqOSdigaaOGaeyypa0JaaGimaaaa@3FAA@
V
α
,β
V
β
+
V
β
V
μ
Γ
α
μβ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqySdegaaOWaaSbaaSqaaiaacYcacqaHYoGyaeqaaOGaaeOvamaaCaaaleqabaGaeqOSdigaaOGaey4kaSIaaeOvamaaCaaaleqabaGaeqOSdigaaOGaaeOvamaaCaaaleqabaGaeqiVd0gaaOGaeu4KdC0aaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqiVd0MaeqOSdigabeaakiabg2da9iaaicdaaaa@4CBF@
guess what index's we
swapped now
V
μ
,β
V
β
+
V
β
V
α
Γ
μ
αβ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiaacYcacqaHYoGyaeqaaOGaaeOvamaaCaaaleqabaGaeqOSdigaaOGaey4kaSIaaeOvamaaCaaaleqabaGaeqOSdigaaOGaaeOvamaaCaaaleqabaGaeqySdegaaOGaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiabg2da9iaaicdaaaa@4CBF@
but we have V
α
≡
d
x
α
dτ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOyaiaabwhacaqG0bGaaeiiaiaabEhacaqGLbGaaeiiaiaabIgacaqGHbGaaeODaiaabwgacaqGGaGaaeOvamaaCaaaleqabaGaeqySdegaaOGaeyyyIO7aaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeqySdegaaaGcbaGaamizaiabes8a0baaaaa@4B35@
and so the first term can be
written as
V
μ
,β
V
β
=
∂
V
μ
∂
x
β
∂
x
μ
∂τ
=
d
V
μ
dτ
=
d
2
x
μ
d
τ
2
by our wonderfull chain rule
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiaacYcacqaHYoGyaeqaaOGaaeOvamaaCaaaleqabaGaeqOSdigaaOGaeyypa0ZaaSaaaeaacqGHciITcaqGwbWaaWbaaSqabeaacqaH8oqBaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHYoGyaaaaaOWaaSaaaeaacqGHciITcaWG4bWaaWbaaSqabeaacqaH8oqBaaaakeaacqGHciITcqaHepaDaaGaeyypa0ZaaSaaaeaacaWGKbGaaeOvamaaCaaaleqabaGaeqiVd0gaaaGcbaGaamizaiabes8a0baacqGH9aqpdaWcaaqaaiaabsgadaahaaWcbeqaaiaabkdaaaGccaWG4bWaaWbaaSqabeaacqaH8oqBaaaakeaacaqGKbGaeqiXdq3aaWbaaSqabeaacaaIYaaaaaaakiaabccacaqGIbGaaeyEaiaabccacaqGVbGaaeyDaiaabkhacaqGGaGaae4Daiaab+gacaqGUbGaaeizaiaabwgacaqGYbGaaeOzaiaabwhacaqGSbGaaeiBaiaabccacaqGJbGaaeiAaiaabggacaqGPbGaaeOBaiaabccacaqGYbGaaeyDaiaabYgacaqGLbaaaa@7984@
and subbing in again to all
terms gets us
d
2
x
μ
d
τ
2
+
Γ
μ
αβ
d
x
α
dτ
d
x
β
dτ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaqGKbWaaWbaaSqabeaacaqGYaaaaOGaamiEamaaCaaaleqabaGaeqiVd0gaaaGcbaGaaeizaiabes8a0naaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaHYoGyaeqaaOWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeqySdegaaaGcbaGaamizaiabes8a0baadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeqiXdqhaaiabg2da9iaaicdaaaa@54C3@
Which is the geodesic
equation that we are after.
So, this gives one a bit of
a feel, one hopes, of what is happening dude
Geodesic
Equation Method 2
Now to do the difficult bit
and show how things all tie up with the variational principle
Consider the path that light
takes
c=
ds
dτ
, where s is the distance traveled and τ is defined as the proper time
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiabg2da9maalaaabaGaamizaiaadohaaeaacaWGKbGaeqiXdqhaaiaabccacaqGSaGaaeiiaiaabEhacaqGObGaaeyzaiaabkhacaqGLbGaaeiiaiaadohacaqGGaGaaeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabsgacaqGPbGaae4CaiaabshacaqGHbGaaeOBaiaabogacaqGLbGaaeiiaiaabshacaqGYbGaaeyyaiaabAhacaqGLbGaaeiBaiaabwgacaqGKbGaaeiiaiaabggacaqGUbGaaeizaiaabccacqaHepaDcaqGGaGaaeyAaiaabohacaqGGaGaaeizaiaabwgacaqGMbGaaeyAaiaab6gacaqGLbGaaeizaiaabccacaqGHbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiCaiaabkhacaqGVbGaaeiCaiaabwgacaqGYbGaaeiiaiaabshacaqGPbGaaeyBaiaabwgaaaa@7AAD@
so that, using our prior
result for distance, one can write
d
τ
2
=
1
c
2
d
s
2
=
1
c
2
g
βγ
d
x
β
d
x
γ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabes8a0naaCaaaleqabaGaaGOmaaaakiabg2da9maalaaabaGaaGymaaqaaiaadogadaahaaWcbeqaaiaaikdaaaaaaOGaamizaiaadohadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaaakiaadEgadaWgaaWcbaGaeqOSdiMaeq4SdCgabeaakiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaGccaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaaa@4FA3@
To make the sums all work
out, an "affine parameter " for the time is introduced. This is
simply to get rid of all those dx's, bloody annoyance that they are.
So, let τ=τ(λ) then dτ=
dτ
dλ
dτ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4uaiaab+gacaqGSaGaaeiiaiaabccacaqGSbGaaeyzaiaabshacaqGGaGaeqiXdqNaeyypa0JaeqiXdqNaaiikaiabeU7aSjaacMcacaqGGaGaaeiDaiaabIgacaqGLbGaaeOBaiaabccacaWGKbGaeqiXdqNaeyypa0ZaaSaaaeaacaWGKbGaeqiXdqhabaGaamizaiabeU7aSbaacaWGKbGaeqiXdqhaaa@557D@
and dividing out by dλ in our distance formula above gives, well
after taking the square root and all
dτ
dλ
=
1
c
ds
dλ
=
1
c
[
g
βγ
d
x
β
dλ
d
x
γ
dλ
]
1
2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbGaeqiXdqhabaGaamizaiabeU7aSbaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGJbaaamaalaaabaGaamizaiaadohaaeaacaWGKbGaeq4UdWgaaiabg2da9maalaaabaGaaGymaaqaaiaadogaaaWaamWaaeaacaWGNbWaaSbaaSqaaiabek7aIjabeo7aNbqabaGcdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabeo7aNbaaaOqaaiaadsgacqaH7oaBaaaacaGLBbGaayzxaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaaaaa@5A3B@
Hence:
dτ=
1
c
[
g
βγ
d
x
β
dλ
d
x
γ
dλ
]
1
2
dλ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiabes8a0jabg2da9maalaaabaGaaGymaaqaaiaadogaaaWaamWaaeaacaWGNbWaaSbaaSqaaiabek7aIjabeo7aNbqabaGcdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabeo7aNbaaaOqaaiaadsgacqaH7oaBaaaacaGLBbGaayzxaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaakiaadsgacqaH7oaBaaa@52EE@
or finding the total time
τ=
∫
1
c
[
g
βγ
(
x
α
)
d
x
β
dλ
d
x
γ
dλ
]
1
2
dλ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaeyypa0Zaa8qaaeaadaWcaaqaaiaaigdaaeaacaWGJbaaamaadmaabaGaam4zamaaBaaaleaacqaHYoGycqaHZoWzaeqaaOGaaiikaiaadIhadaahaaWcbeqaaiabeg7aHbaakiaacMcadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabeo7aNbaaaOqaaiaadsgacqaH7oaBaaaacaGLBbGaayzxaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaaaeqabeqdcqGHRiI8aOGaamizaiabeU7aSbaa@5821@
So, now the job is to
minimize this integral, Laa Laa oops, I mean ala this is the celebrated
least action integral for our geodesic.
When I was plagiarizing
researching for this project on the web I found one or two derivations of this
result. However, they were all rather more complicated because it is obvious
that whatever locally minimizes f1/2, will also locally minimize plain
old f as well, so we'll drop the square root complication and just consider:
τ=
∫
g
βγ
(
x
α
)
d
x
β
dλ
d
x
γ
dλ
dλ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaeyypa0Zaa8qaaeaacaWGNbWaaSbaaSqaaiabek7aIjabeo7aNbqabaGccaGGOaGaamiEamaaCaaaleqabaGaeqySdegaaOGaaiykamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaaaSqabeqaniabgUIiYdGccaWGKbGaeq4UdWgaaa@52D3@
∂f
∂
x
α
−
d
dλ
(
∂f
∂
x
˙
α
)=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqySdegaaaaakiabgkHiTmaalaaabaGaamizaaqaaiaadsgacqaH7oaBaaGaaiikamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kqadIhagaGaamaaCaaaleqabaGaeqySdegaaaaakiaacMcacqGH9aqpcaaIWaaaaa@4ACD@
First term, and note we have
dropped c because we are equating to 0
∂f
∂
x
α
=
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqySdegaaaaakiabg2da9iaadEgadaWgaaWcbaGaeqOSdiMaeq4SdCMaaiilaiabeg7aHbqabaGcdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabeo7aNbaaaOqaaiaadsgacqaH7oaBaaaaaa@5129@
Second term
∂f
∂
x
˙
α
=
g
βγ
∂
∂
x
˙
α
(
d
x
β
dλ
d
x
γ
dλ
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaaaaOGaeyypa0Jaam4zamaaBaaaleaacqaHYoGycqaHZoWzaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITceWG4bGbaiaadaahaaWcbeqaaiabeg7aHbaaaaGccaGGOaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaamizaiabeU7aSbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHZoWzaaaakeaacaWGKbGaeq4UdWgaaiaacMcaaaa@55F4@
∂f
∂
x
˙
α
=
g
βγ
∂
∂
x
˙
α
(
x
˙
β
x
˙
γ
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaaaaOGaeyypa0Jaam4zamaaBaaaleaacqaHYoGycqaHZoWzaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITceWG4bGbaiaadaahaaWcbeqaaiabeg7aHbaaaaGccaGGOaGabmiEayaacaWaaWbaaSqabeaacqaHYoGyaaGcceWG4bGbaiaadaahaaWcbeqaaiabeo7aNbaakiaacMcaaaa@4EDA@
where I've changed the
notation to make it a bit clearer what's going on. So mentally ignore the dots
on the x's when doing the sums. I have filled in all the steps because they were not done in the derivation where I
copied the outline of this from. What these poor excuse's for Tellytubby
professors don’t realize is that, precisely because the reader is going through
these elementary deviations, it inherently implies that the punter is not familiar with these sorts of
calculations, and so more guidance is needed. e.g. Note how the delta swap's
index's.
∂f
∂
x
˙
α
=
g
βγ
[
∂
x
˙
β
∂
x
˙
α
x
˙
γ
+
x
˙
β
∂
x
˙
γ
∂
x
˙
α
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaaaaOGaeyypa0Jaam4zamaaBaaaleaacqaHYoGycqaHZoWzaeqaaOWaamWaaeaadaWcaaqaaiabgkGi2kqadIhagaGaamaaCaaaleqabaGaeqOSdigaaaGcbaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaaaaOGabmiEayaacaWaaWbaaSqabeaacqaHZoWzaaGccqGHRaWkceWG4bGbaiaadaahaaWcbeqaaiabek7aIbaakmaalaaabaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHZoWzaaaakeaacqGHciITceWG4bGbaiaadaahaaWcbeqaaiabeg7aHbaaaaaakiaawUfacaGLDbaaaaa@5BCF@
∂f
∂
x
˙
α
=
g
βγ
[
∂
x
˙
β
∂
x
˙
γ
∂
x
˙
γ
∂
x
˙
α
x
˙
γ
+
x
˙
β
δ
α
γ
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaaaaOGaeyypa0Jaam4zamaaBaaaleaacqaHYoGycqaHZoWzaeqaaOWaamWaaeaadaWcaaqaaiabgkGi2kqadIhagaGaamaaCaaaleqabaGaeqOSdigaaaGcbaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHZoWzaaaaaOWaaSaaaeaacqGHciITceWG4bGbaiaadaahaaWcbeqaaiabeo7aNbaaaOqaaiabgkGi2kqadIhagaGaamaaCaaaleqabaGaeqySdegaaaaakiqadIhagaGaamaaCaaaleqabaGaeq4SdCgaaOGaey4kaSIabmiEayaacaWaaWbaaSqabeaacqaHYoGyaaGccqaH0oazdaqhaaWcbaGaeqySdegabaGaeq4SdCgaaaGccaGLBbGaayzxaaaaaa@60F9@
∂f
∂
x
˙
α
=
g
βγ
[
δ
γ
β
δ
α
γ
x
˙
γ
+
x
˙
β
δ
α
γ
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaaaaOGaeyypa0Jaam4zamaaBaaaleaacqaHYoGycqaHZoWzaeqaaOWaamWaaeaacqaH0oazdaqhaaWcbaGaeq4SdCgabaGaeqOSdigaaOGaeqiTdq2aa0baaSqaaiabeg7aHbqaaiabeo7aNbaakiqadIhagaGaamaaCaaaleqabaGaeq4SdCgaaOGaey4kaSIabmiEayaacaWaaWbaaSqabeaacqaHYoGyaaGccqaH0oazdaqhaaWcbaGaeqySdegabaGaeq4SdCgaaaGccaGLBbGaayzxaaaaaa@5A05@
∂f
∂
x
˙
α
=
g
βγ
δ
α
γ
[
δ
γ
β
x
˙
γ
+
x
˙
β
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaaaaOGaeyypa0Jaam4zamaaBaaaleaacqaHYoGycqaHZoWzaeqaaOGaeqiTdq2aa0baaSqaaiabeg7aHbqaaiabeo7aNbaakmaadmaabaGaeqiTdq2aa0baaSqaaiabeo7aNbqaaiabek7aIbaakiqadIhagaGaamaaCaaaleqabaGaeq4SdCgaaOGaey4kaSIabmiEayaacaWaaWbaaSqabeaacqaHYoGyaaaakiaawUfacaGLDbaaaaa@54E3@
∂f
∂
x
˙
α
=
g
βγ
δ
α
γ
[
x
˙
β
+
x
˙
β
]
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaaaaOGaeyypa0Jaam4zamaaBaaaleaacqaHYoGycqaHZoWzaeqaaOGaeqiTdq2aa0baaSqaaiabeg7aHbqaaiabeo7aNbaakmaadmaabaGabmiEayaacaWaaWbaaSqabeaacqaHYoGyaaGccqGHRaWkceWG4bGbaiaadaahaaWcbeqaaiabek7aIbaaaOGaay5waiaaw2faaaaa@4FB9@
∂f
∂
x
˙
α
=2.
g
βα
x
˙
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRabmiEayaacaWaaWbaaSqabeaacqaHXoqyaaaaaOGaeyypa0JaaGOmaiaac6cacaWGNbWaaSbaaSqaaiabek7aIjabeg7aHbqabaGcceWG4bGbaiaadaahaaWcbeqaaiabek7aIbaaaaa@4641@
We now have then
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
−
d
dλ
[
2.
g
αβ
d
x
β
dλ
]=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacqaHYoGycqaHZoWzcaGGSaGaeqySdegabeaakmaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaacqGHsisldaWcaaqaaiaadsgaaeaacaWGKbGaeq4UdWgaamaadmaabaGaaGOmaiaac6cacaWGNbWaaSbaaSqaaiabeg7aHjabek7aIbqabaGcdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaaaGaay5waiaaw2faaiabg2da9iaaicdaaaa@5DF9@
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
−2.
g
αβ
d
dλ
(
d
x
β
dλ
)−2.
d
dλ
(
g
αβ
).
d
x
β
dλ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacqaHYoGycqaHZoWzcaGGSaGaeqySdegabeaakmaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaacqGHsislcaaIYaGaaiOlaiaadEgadaWgaaWcbaGaeqySdeMaeqOSdigabeaakmaalaaabaGaamizaaqaaiaadsgacqaH7oaBaaGaaiikamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaGaaiykaiabgkHiTiaaikdacaGGUaWaaSaaaeaacaWGKbaabaGaamizaiabeU7aSbaacaGGOaGaam4zamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaaiykaiaac6cadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaaiabg2da9iaaicdaaaa@7029@
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
−2.
g
αβ
d
2
x
β
d
λ
2
−2.
d
d
x
γ
(
g
αβ
)
d
x
γ
dλ
d
x
β
dλ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacqaHYoGycqaHZoWzcaGGSaGaeqySdegabeaakmaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaacqGHsislcaaIYaGaaiOlaiaadEgadaWgaaWcbaGaeqySdeMaeqOSdigabeaakmaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBdaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaaGOmaiaac6cadaWcaaqaaiaadsgaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaaakiaacIcacaWGNbWaaSbaaSqaaiabeg7aHjabek7aIbqabaGccaGGPaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaaiabg2da9iaaicdaaaa@7406@
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
−2.
g
αβ
d
2
x
β
d
λ
2
−2.
g
αβ,γ
d
x
γ
dλ
d
x
β
dλ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacqaHYoGycqaHZoWzcaGGSaGaeqySdegabeaakmaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaacqGHsislcaaIYaGaaiOlaiaadEgadaWgaaWcbaGaeqySdeMaeqOSdigabeaakmaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBdaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaaGOmaiaac6cacaWGNbWaaSbaaSqaaiabeg7aHjabek7aIjaacYcacqaHZoWzaeqaaOWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaaiabg2da9iaaicdaaaa@7047@
g
μα
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
−2.
g
μα
g
αβ
d
2
x
β
d
λ
2
−2.
g
μα
g
αβ,γ
d
x
γ
dλ
d
x
β
dλ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaCaaaleqabaGaeqiVd0MaeqySdegaaOGaam4zamaaBaaaleaacqaHYoGycqaHZoWzcaGGSaGaeqySdegabeaakmaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaacqGHsislcaaIYaGaaiOlaiaadEgadaahaaWcbeqaaiabeY7aTjabeg7aHbaakiaadEgadaWgaaWcbaGaeqySdeMaeqOSdigabeaakmaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBdaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaaGOmaiaac6cacaWGNbWaaWbaaSqabeaacqaH8oqBcqaHXoqyaaGccaWGNbWaaSbaaSqaaiabeg7aHjabek7aIjaacYcacqaHZoWzaeqaaOWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaaiabg2da9iaaicdaaaa@7DAF@
2.
d
2
x
μ
d
λ
2
−
g
μα
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
+2.
g
μα
g
αβ,γ
d
x
γ
dλ
d
x
β
dλ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaac6cadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacqaH8oqBaaaakeaacaWGKbGaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaadEgadaahaaWcbeqaaiabeY7aTjabeg7aHbaakiaadEgadaWgaaWcbaGaeqOSdiMaeq4SdCMaaiilaiabeg7aHbqabaGcdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabeo7aNbaaaOqaaiaadsgacqaH7oaBaaGaey4kaSIaaGOmaiaac6cacaWGNbWaaWbaaSqabeaacqaH8oqBcqaHXoqyaaGccaWGNbWaaSbaaSqaaiabeg7aHjabek7aIjaacYcacqaHZoWzaeqaaOWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaaiabg2da9iaaicdaaaa@74DF@
2.
d
2
x
μ
d
λ
2
−
g
μα
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
+
g
μα
g
αβ,γ
d
x
γ
dλ
d
x
β
dλ
+
g
μα
g
αβ,γ
d
x
γ
dλ
d
x
β
dλ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaac6cadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaWbaaSqabeaacqaH8oqBaaaakeaacaWGKbGaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaadEgadaahaaWcbeqaaiabeY7aTjabeg7aHbaakiaadEgadaWgaaWcbaGaeqOSdiMaeq4SdCMaaiilaiabeg7aHbqabaGcdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabeo7aNbaaaOqaaiaadsgacqaH7oaBaaGaey4kaSIaam4zamaaCaaaleqabaGaeqiVd0MaeqySdegaaOGaam4zamaaBaaaleaacqaHXoqycqaHYoGycaGGSaGaeq4SdCgabeaakmaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabeo7aNbaaaOqaaiaadsgacqaH7oaBaaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaamizaiabeU7aSbaacqGHRaWkcaWGNbWaaWbaaSqabeaacqaH8oqBcqaHXoqyaaGccaWGNbWaaSbaaSqaaiabeg7aHjabek7aIjaacYcacqaHZoWzaeqaaOWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaaiabg2da9iaaicdaaaa@8C60@
d
2
x
μ
d
λ
2
+
g
μα
2
[
g
αβ,γ
d
x
γ
dλ
d
x
β
dλ
+
g
αβ,γ
d
x
γ
dλ
d
x
β
dλ
−
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
]=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaeqiVd0gaaaGcbaGaamizaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaadEgadaahaaWcbeqaaiabeY7aTjabeg7aHbaaaOqaaiaaikdaaaWaamWaaeaacaWGNbWaaSbaaSqaaiabeg7aHjabek7aIjaacYcacqaHZoWzaeqaaOWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaaiabgUcaRiaadEgadaWgaaWcbaGaeqySdeMaeqOSdiMaaiilaiabeo7aNbqabaGcdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHZoWzaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaGaeyOeI0Iaam4zamaaBaaaleaacqaHYoGycqaHZoWzcaGGSaGaeqySdegabeaakmaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaaaiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@84C0@
Ahmm, getting close, seems
familiar? Swap one more time
d
2
x
μ
d
λ
2
+
g
μα
2
[
g
αβ,γ
d
x
γ
dλ
d
x
β
dλ
+
g
αγ,β
d
x
β
dλ
d
x
γ
dλ
−
g
βγ,α
d
x
β
dλ
d
x
γ
dλ
]=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaeqiVd0gaaaGcbaGaamizaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaadEgadaahaaWcbeqaaiabeY7aTjabeg7aHbaaaOqaaiaaikdaaaWaamWaaeaacaWGNbWaaSbaaSqaaiabeg7aHjabek7aIjaacYcacqaHZoWzaeqaaOWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaaiabgUcaRiaadEgadaWgaaWcbaGaeqySdeMaeq4SdCMaaiilaiabek7aIbqabaGcdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabeo7aNbaaaOqaaiaadsgacqaH7oaBaaGaeyOeI0Iaam4zamaaBaaaleaacqaHYoGycqaHZoWzcaGGSaGaeqySdegabeaakmaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiaadsgacqaH7oaBaaWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeq4SdCgaaaGcbaGaamizaiabeU7aSbaaaiaawUfacaGLDbaacqGH9aqpcaaIWaaaaa@84C0@
d
2
x
μ
d
λ
2
+
g
μα
2
[
g
αβ,γ
+
g
αγ,β
−
g
βγ,α
]
d
x
β
dλ
d
x
γ
dλ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaeqiVd0gaaaGcbaGaamizaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaadEgadaahaaWcbeqaaiabeY7aTjabeg7aHbaaaOqaaiaaikdaaaWaamWaaeaacaWGNbWaaSbaaSqaaiabeg7aHjabek7aIjaacYcacqaHZoWzaeqaaOGaey4kaSIaam4zamaaBaaaleaacqaHXoqycqaHZoWzcaGGSaGaeqOSdigabeaakiabgkHiTiaadEgadaWgaaWcbaGaeqOSdiMaeq4SdCMaaiilaiabeg7aHbqabaaakiaawUfacaGLDbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiabeo7aNbaaaOqaaiaadsgacqaH7oaBaaGaeyypa0JaaGimaaaa@6B08@
which, by referring to our
Christoffel page, is
d
2
x
μ
d
λ
2
+
Γ
μ
βγ
d
x
β
dλ
d
x
γ
dλ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaeqiVd0gaaaGcbaGaamizaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGycqaHZoWzaeqaaOWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaamizaiabeU7aSbaadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHZoWzaaaakeaacaWGKbGaeq4UdWgaaiabg2da9iaaicdaaaa@54AB@
and, obviously, we can let
tau = lambda
amazing, ain't it. How
different methods give the same answer.
©
Kevin Aylward 2000 - 2022
All rights reserved
The information on the page may be
reproduced
providing that this source is acknowledged.
Website last modified 1st January
2022
http://www.kevinaylward.co.uk/gr/index.html
www.kevinaylward.co.uk