General Relativity For
Tellytubbys
Geodesic Deviation and
Potbellied Mr. Riemann
Sir Kevin Aylward B.Sc.,
Warden of the Kings Ale
Back
to the Contents section
Overview
This section attempts to
give a handle on the Riemann curvature tensor. I have had a bit of bother with
this one as I could not find a really decent web site to steal the derivations
from. They all missed out the bits, which I consider are crucial. For example, the fundamental point of the Riemann
tensor, as far as G.R. is concerned, is that it describes the acceleration of geodesics with respect
to one another. Some sites noted this fact, but did not show in their
derivations how that particular derivation actually
related to this acceleration. Taking vectors on round trips with talks of
parallel transportation don’t immediately explain what's happening, although
very impressive sounding it is, indeed. Of course it's probably that I'm just
too thick to see it. In addition, of course, all derivations left most of the
details to one's futile imagination. I am led to believe that many people don’t
have a bleeding clue what's going on, although they can apply the formulas in a
sleepwalking sense.
Further point. It is what
are called, tidal forces that are
equivalent to the acceleration of geodesics (geodesic deviation). If you
consider the Newtonian, inverse square force law, at different radiuses, there
is an effective differential force that tries to pull apart objects.
Consider Tinky-Winky and
Dipsy orbiting the earth with some velocity, in what are assumed to be
geodesics. Since they are not the same geodesics, Tinky-Winky and Dipsy may or
may not move closer or further away from each other. The Riemann curvature
tensor is what tells one what that acceleration between the Tellytubbys will
be. This is expressed by
a
w
=
D
2
w
a
D
λ
2
=
R
a
bcd
d
x
b
dλ
d
w
c
dλ
d
x
d
dλ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaBaaaleaacaWG3baabeaakiabg2da9maalaaabaGaamiramaaCaaaleqabaGaaGOmaaaakiaadEhadaahaaWcbeqaaiaadggaaaaakeaacaWGebGaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaakmaalaaabaGaamizaiaadIhadaahaaWcbeqaaiaadkgaaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadEhadaahaaWcbeqaaiaadogaaaaakeaacaWGKbGaeq4UdWgaamaalaaabaGaamizaiaadIhadaahaaWcbeqaaiaadsgaaaaakeaacaWGKbGaeq4UdWgaaaaa@5768@
or, equivalently
a
w
=
D
2
w
a
D
λ
2
=
R
a
bcd
v
b
w
c
v
d
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaBaaaleaacaWG3baabeaakiabg2da9maalaaabaGaamiramaaCaaaleqabaGaaGOmaaaakiaadEhadaahaaWcbeqaaiaadggaaaaakeaacaWGebGaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaakiaadAhadaahaaWcbeqaaiaadkgaaaGccaWG3bWaaWbaaSqabeaacaWGJbaaaOGaamODamaaCaaaleqabaGaamizaaaaaaa@4C98@
or equivalently, in posher
notation
a=
∇
v
∇
v
w=
R
a
bcd
v
b
w
c
v
d
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyaiabg2da9iabgEGirpaaBaaaleaacaGG2baabeaakiabgEGirpaaBaaaleaacaGG2baabeaakiaacEhacqGH9aqpcaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaamizaaqabaGccaWG2bWaaWbaaSqabeaacaWGIbaaaOGaam4DamaaCaaaleqabaGaam4yaaaakiaadAhadaahaaWcbeqaaiaadsgaaaaaaa@4A78@
where D is the covariant
derivative operator, w is the
separation vector between the Tellytubbys geodesic, and V is the parameterized velocity of the Tellytubbys as they travel
on their geodesics. The last form is the second covariant derivative of the
connecting vector w in the direction of v, the gist of this will be shown
Calculation
of Riemann
This section calculates what
the Riemann tensor is, it is then shown afterwards how this is related to the
concept of acceleration described above.
First, lets note some prior
results,
T
α
;β
=
T
α
,
β
+
Γ
α
μβ
T
μ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeivamaaCaaaleqabaGaeqySdegaaOWaaSbaaSqaaiaacUdacqaHYoGyaeqaaOGaeyypa0JaaeivamaaCaaaleqabaGaeqySdegaaOGaaiilamaaBaaaleaacqaHYoGyaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqiVd0MaeqOSdigabeaakiaabsfadaahaaWcbeqaaiabeY7aTbaaaaa@4BD8@
T
α
β
;ρ
=
T
α
β
,ρ
+
Γ
α
μρ
T
μ
β
−
Γ
μ
βρ
T
α
μ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeivamaaCaaaleqabaGaeqySdegaaOWaaSbaaSqaaiabek7aIbqabaGcdaWgaaWcbaGaai4oaiabeg8aYbqabaGccqGH9aqpcaqGubWaaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqOSdigabeaakmaaBaaaleaacaGGSaGaeqyWdihabeaakiabgUcaRiabfo5ahnaaCaaaleqabaGaeqySdegaaOWaaSbaaSqaaiabeY7aTjabeg8aYbqabaGccaqGubWaaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqOSdigabeaakiabgkHiTiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabek7aIjabeg8aYbqabaGccaqGubWaaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqiVd0gabeaaaaa@5E2C@
For a normal second order
partial derivative, we have
∂
2
Φ
∂x∂y
=
∂
2
Φ
∂y∂x
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqqHMoGraeaacqGHciITcaWG4bGaeyOaIyRaamyEaaaacqGH9aqpdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabfA6agbqaaiabgkGi2kaadMhacqGHciITcaWG4baaaaaa@484E@
For the covariant derivative
of a vector this is not true in general. i.e.
V
;αβ
≠
V
;βα
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaGG7aGaeqySdeMaeqOSdigabeaakiabgcMi5kaadAfadaWgaaWcbaGaai4oaiabek7aIjabeg7aHbqabaaaaa@41D1@
So, lets calculate what the
difference on a vector A is
[
∇
α
,
∇
β
]=
∇
α
∇
β
−
∇
β
∇
α
=
V
;αβ
−
V
;βα
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacqaHXoqyaeqaaOGaaiilaiabgEGirpaaBaaaleaacqaHYoGyaeqaaOGaaiyxaiabg2da9iabgEGirpaaBaaaleaacqaHXoqyaeqaaOGaey4bIe9aaSbaaSqaaiabek7aIbqabaGccqGHsislcqGHhis0daWgaaWcbaGaeqOSdigabeaakiabgEGirpaaBaaaleaacqaHXoqyaeqaaOGaeyypa0JaamOvamaaBaaaleaacaGG7aGaeqySdeMaeqOSdigabeaakiabgkHiTiaadAfadaWgaaWcbaGaai4oaiabek7aIjabeg7aHbqabaaaaa@5A88@
oh, and the first term above
is called a commentator, and this does get rather messy, but there you go
that’s G.R. for you, and I dropped the A on the LHS just to keep things uncluttered.
(
A
μ
;α
)
;β
=
(
A
μ
,α
+
Γ
μ
αζ
A
ζ
)
;β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeqySdegabeaakiaacMcadaWgaaWcbaGaai4oaiabek7aIbqabaGccqGH9aqpcaGGOaGaamyqamaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiaacYcacqaHXoqyaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOTdOhabeaakiaadgeadaahaaWcbeqaaiabeA7a6baakiaacMcadaWgaaWcbaGaai4oaiabek7aIbqabaaaaa@53D0@
(
A
μ
;α
)
;β
=
(
A
μ
,α
+
Γ
μ
αζ
A
ζ
)
,β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeqySdegabeaakiaacMcadaWgaaWcbaGaai4oaiabek7aIbqabaGccqGH9aqpcaGGOaGaamyqamaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiaacYcacqaHXoqyaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOTdOhabeaakiaadgeadaahaaWcbeqaaiabeA7a6baakiaacMcadaWgaaWcbaGaaiilaiabek7aIbqabaaaaa@53C1@
+
Γ
μ
βγ
(
A
γ
,α
+
Γ
γ
αζ
A
ζ
)
−
Γ
γ
βα
(
A
μ
,γ
+
Γ
μ
γζ
A
ζ
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGycqaHZoWzaeqaaOGaaiikaiaadgeadaahaaWcbeqaaiabeo7aNbaakmaaBaaaleaacaGGSaGaeqySdegabeaakiabgUcaRiabfo5ahnaaCaaaleqabaGaeq4SdCgaaOWaaSbaaSqaaiabeg7aHjabeA7a6bqabaGccaWGbbWaaWbaaSqabeaacqaH2oGEaaGccaGGPaaabaGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacqaHZoWzaaGcdaWgaaWcbaGaeqOSdiMaeqySdegabeaakiaacIcacaWGbbWaaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaaiilaiabeo7aNbqabaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHZoWzcqaH2oGEaeqaaOGaamyqamaaCaaaleqabaGaeqOTdOhaaOGaaiykaaaaaa@6773@
You might have to think a
bit about the above, but its just treat the first derivative as one big 2nd
rank tensor, contravariant one, covariant one sort of thing.
(
A
μ
;α
)
;β
=
(
A
μ
,α
+
Γ
μ
αζ
A
ζ
)
,β
+
Γ
μ
βγ
A
γ
;α
−
Γ
γ
βα
A
μ
;γ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeqySdegabeaakiaacMcadaWgaaWcbaGaai4oaiabek7aIbqabaGccqGH9aqpcaGGOaGaamyqamaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiaacYcacqaHXoqyaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOTdOhabeaakiaadgeadaahaaWcbeqaaiabeA7a6baakiaacMcadaWgaaWcbaGaaiilaiabek7aIbqabaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGycqaHZoWzaeqaaOGaamyqamaaCaaaleqabaGaeq4SdCgaaOWaaSbaaSqaaiaacUdacqaHXoqyaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacqaHZoWzaaGcdaWgaaWcbaGaeqOSdiMaeqySdegabeaakiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeq4SdCgabeaaaaa@6DA6@
That one above, I thought
quite neat when I first worked it out. Once again, see what dummy index's are
swapped here
(
A
μ
;α
)
;β
=
(
A
μ
,α
+
Γ
μ
αζ
A
ζ
)
,β
+
Γ
μ
βζ
A
ζ
;α
−
Γ
ζ
βα
A
μ
;ζ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeqySdegabeaakiaacMcadaWgaaWcbaGaai4oaiabek7aIbqabaGccqGH9aqpcaGGOaGaamyqamaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiaacYcacqaHXoqyaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOTdOhabeaakiaadgeadaahaaWcbeqaaiabeA7a6baakiaacMcadaWgaaWcbaGaaiilaiabek7aIbqabaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGycqaH2oGEaeqaaOGaamyqamaaCaaaleqabaGaeqOTdOhaaOWaaSbaaSqaaiaacUdacqaHXoqyaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacqaH2oGEaaGcdaWgaaWcbaGaeqOSdiMaeqySdegabeaakiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeqOTdOhabeaaaaa@6DFE@
(
A
μ
;α
)
;β
=
A
μ
,αβ
+
Γ
μ
αζ,β
A
ζ
+
Γ
μ
αζ
A
ζ
,β
+
Γ
μ
βζ
A
ζ
;α
−
Γ
ζ
βα
A
μ
;ζ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeqySdegabeaakiaacMcadaWgaaWcbaGaai4oaiabek7aIbqabaGccqGH9aqpcaWGbbWaaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaaiilaiabeg7aHjabek7aIbqabaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaH2oGEcaGGSaGaeqOSdigabeaakiaadgeadaahaaWcbeqaaiabeA7a6baakiabgUcaRiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabeA7a6bqabaGccaWGbbWaaWbaaSqabeaacqaH2oGEaaGcdaWgaaWcbaGaaiilaiabek7aIbqabaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGycqaH2oGEaeqaaOGaamyqamaaCaaaleqabaGaeqOTdOhaaOWaaSbaaSqaaiaacUdacqaHXoqyaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacqaH2oGEaaGcdaWgaaWcbaGaeqOSdiMaeqySdegabeaakiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeqOTdOhabeaaaaa@7B1A@
Now swap all the alphas and
betas, but note that the Christoffel symbols are symmetric, so we can swap
those ones back again.
(
A
μ
;β
)
;α
=
A
μ
,βα
+
Γ
μ
βζ,α
A
ζ
+
Γ
μ
βζ
A
ζ
,α
+
Γ
μ
αζ
A
ζ
;β
−
Γ
ζ
βα
A
μ
;ζ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeqOSdigabeaakiaacMcadaWgaaWcbaGaai4oaiabeg7aHbqabaGccqGH9aqpcaWGbbWaaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaaiilaiabek7aIjabeg7aHbqabaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGycqaH2oGEcaGGSaGaeqySdegabeaakiaadgeadaahaaWcbeqaaiabeA7a6baakiabgUcaRiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabek7aIjabeA7a6bqabaGccaWGbbWaaWbaaSqabeaacqaH2oGEaaGcdaWgaaWcbaGaaiilaiabeg7aHbqabaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaH2oGEaeqaaOGaamyqamaaCaaaleqabaGaeqOTdOhaaOWaaSbaaSqaaiaacUdacqaHYoGyaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacqaH2oGEaaGcdaWgaaWcbaGaeqOSdiMaeqySdegabeaakiaadgeadaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacaGG7aGaeqOTdOhabeaaaaa@7B1A@
Now to subtract and collect
terms, note the first and last term obviously cancels
V
;αβ
−
V
;βα
=(
Γ
μ
αζ,β
−
Γ
μ
βζ,α
)
A
ζ
+−
Γ
μ
αζ
(
A
ζ
;β
−
A
ζ
,β
)
−−
Γ
μ
βζ
(
A
ζ
;α
−
A
ζ
,α
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWGwbWaaSbaaSqaaiaacUdacqaHXoqycqaHYoGyaeqaaOGaeyOeI0IaamOvamaaBaaaleaacaGG7aGaeqOSdiMaeqySdegabeaakiabg2da9iaacIcacqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaH2oGEcaGGSaGaeqOSdigabeaakiabgkHiTiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabek7aIjabeA7a6jaacYcacqaHXoqyaeqaaOGaaiykaiaadgeadaahaaWcbeqaaiabeA7a6baaaOqaaiabgUcaRiabgkHiTiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabeA7a6bqabaGccaGGOaGaamyqamaaCaaaleqabaGaeqOTdOhaaOWaaSbaaSqaaiaacUdacqaHYoGyaeqaaOGaeyOeI0IaamyqamaaCaaaleqabaGaeqOTdOhaaOWaaSbaaSqaaiaacYcacqaHYoGyaeqaaOGaaiykaaqaaiabgkHiTiabgkHiTiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabek7aIjabeA7a6bqabaGccaGGOaGaamyqamaaCaaaleqabaGaeqOTdOhaaOWaaSbaaSqaaiaacUdacqaHXoqyaeqaaOGaeyOeI0IaamyqamaaCaaaleqabaGaeqOTdOhaaOWaaSbaaSqaaiaacYcacqaHXoqyaeqaaOGaaiykaaaaaa@84A5@
V
;αβ
−
V
;βα
=(
Γ
μ
αζ,β
−
Γ
μ
βζ,α
)
A
ζ
−
Γ
μ
αζ
Γ
ζ
ρβ
A
ρ
+
Γ
μ
βζ
Γ
ζ
ρα
A
ρ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaWGwbWaaSbaaSqaaiaacUdacqaHXoqycqaHYoGyaeqaaOGaeyOeI0IaamOvamaaBaaaleaacaGG7aGaeqOSdiMaeqySdegabeaakiabg2da9iaacIcacqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaH2oGEcaGGSaGaeqOSdigabeaakiabgkHiTiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabek7aIjabeA7a6jaacYcacqaHXoqyaeqaaOGaaiykaiaadgeadaahaaWcbeqaaiabeA7a6baaaOqaaiabgkHiTiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabeA7a6bqabaGccqqHtoWrdaahaaWcbeqaaiabeA7a6baakmaaBaaaleaacqaHbpGCcqaHYoGyaeqaaOGaamyqamaaCaaaleqabaGaeqyWdihaaaGcbaGaey4kaSIaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqOSdiMaeqOTdOhabeaakiabfo5ahnaaCaaaleqabaGaeqOTdOhaaOWaaSbaaSqaaiabeg8aYjabeg7aHbqabaGccaWGbbWaaWbaaSqabeaacqaHbpGCaaaaaaa@7C75@
And with more index swapping
V
;αβ
−
V
;βα
=(
Γ
μ
αζ,β
−
Γ
μ
βζ,α
)
A
ζ
−
Γ
μ
αρ
Γ
ρ
ζβ
A
ζ
+
Γ
μ
βρ
Γ
ρ
ζα
A
ζ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaGG7aGaeqySdeMaeqOSdigabeaakiabgkHiTiaadAfadaWgaaWcbaGaai4oaiabek7aIjabeg7aHbqabaGccqGH9aqpcaGGOaGaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOTdONaaiilaiabek7aIbqabaGccqGHsislcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGycqaH2oGEcaGGSaGaeqySdegabeaakiaacMcacaWGbbWaaWbaaSqabeaacqaH2oGEaaGccqGHsislcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaeqOTdONaeqOSdigabeaakiaadgeadaahaaWcbeqaaiabeA7a6baakiabgUcaRiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabek7aIjabeg8aYbqabaGccqqHtoWrdaahaaWcbeqaaiabeg8aYbaakmaaBaaaleaacqaH2oGEcqaHXoqyaeqaaOGaamyqamaaCaaaleqabaGaeqOTdOhaaaaa@7C6A@
V
;αβ
−
V
;βα
=(
Γ
μ
αζ,β
−
Γ
μ
βζ,α
−
Γ
μ
αρ
Γ
ρ
ζβ
+
Γ
μ
βρ
Γ
ρ
ζα
)
A
ζ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBaaaleaacaGG7aGaeqySdeMaeqOSdigabeaakiabgkHiTiaadAfadaWgaaWcbaGaai4oaiabek7aIjabeg7aHbqabaGccqGH9aqpcaGGOaGaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqySdeMaeqOTdONaaiilaiabek7aIbqabaGccqGHsislcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGycqaH2oGEcaGGSaGaeqySdegabeaakiabgkHiTiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabeg8aYbqabaGccqqHtoWrdaahaaWcbeqaaiabeg8aYbaakmaaBaaaleaacqaH2oGEcqaHYoGyaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqOSdiMaeqyWdihabeaakiabfo5ahnaaCaaaleqabaGaeqyWdihaaOWaaSbaaSqaaiabeA7a6jabeg7aHbqabaGccaGGPaGaamyqamaaCaaaleqabaGaeqOTdOhaaaaa@76F6@
So, now the bit in brackets
is, as you might have guessed is the Riemann tensor
[
∇
α
,
∇
β
]=
Γ
μ
αζ,β
−
Γ
μ
βζ,α
−
Γ
μ
αρ
Γ
ρ
ζβ
+
Γ
μ
βρ
Γ
ρ
ζα
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacqaHXoqyaeqaaOGaaiilaiabgEGirpaaBaaaleaacqaHYoGyaeqaaOGaaiyxaiabg2da9iabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeg7aHjabeA7a6jaacYcacqaHYoGyaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqOSdiMaeqOTdONaaiilaiabeg7aHbqabaGccqGHsislcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaeqOTdONaeqOSdigabeaakiabgUcaRiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabek7aIjabeg8aYbqabaGccqqHtoWrdaahaaWcbeqaaiabeg8aYbaakmaaBaaaleaacqaH2oGEcqaHXoqyaeqaaaaa@70FE@
[
∇
α
,
∇
β
]=
Γ
μ
ζα,β
−
Γ
μ
ζβ,α
−
Γ
μ
αρ
Γ
ρ
ζβ
+
Γ
μ
βρ
Γ
ρ
ζα
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacqaHXoqyaeqaaOGaaiilaiabgEGirpaaBaaaleaacqaHYoGyaeqaaOGaaiyxaiabg2da9iabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabeA7a6jabeg7aHjaacYcacqaHYoGyaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacqaH8oqBaaGcdaWgaaWcbaGaeqOTdONaeqOSdiMaaiilaiabeg7aHbqabaGccqGHsislcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHXoqycqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaeqOTdONaeqOSdigabeaakiabgUcaRiabfo5ahnaaCaaaleqabaGaeqiVd0gaaOWaaSbaaSqaaiabek7aIjabeg8aYbqabaGccqqHtoWrdaahaaWcbeqaaiabeg8aYbaakmaaBaaaleaacqaH2oGEcqaHXoqyaeqaaaaa@70FE@
and just to make it agree
with the top of the page, renaming indexes using the negative Christoffel term
as a base gives
R
a
bcd
=
Γ
a
bd,c
−
Γ
a
bc,d
+
Γ
a
cρ
Γ
ρ
bd
−
Γ
a
dρ
Γ
ρ
bc
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgaaeqaaOGaeyypa0Jaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGKbGaaiilaiaadogaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaaiilaiaadsgaaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadogacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamOyaiaadsgaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadsgacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamOyaiaadogaaeqaaaaa@6064@
Right, now a result needs to
be derived
By inspection, it can be
seen that Riemann is antisymmetric in the last two indexes d and c
R
a
bcd
=−
R
a
bdc
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgaaeqaaOGaeyypa0JaeyOeI0IaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaamizaiaadogaaeqaaaaa@41A1@
By cyclic rotation of the
last 3 indexes of Riemann we get
R
a
bcd
=
Γ
a
bd,c
−
Γ
a
bc,d
+
Γ
a
cρ
Γ
ρ
bd
−
Γ
a
dρ
Γ
ρ
bc
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgaaeqaaOGaeyypa0Jaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGKbGaaiilaiaadogaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaaiilaiaadsgaaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadogacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamOyaiaadsgaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadsgacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamOyaiaadogaaeqaaaaa@6064@
R
a
dbc
=
Γ
a
dc,b
−
Γ
a
db,c
+
Γ
a
bρ
Γ
ρ
dc
−
Γ
a
cρ
Γ
ρ
db
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGKbGaamOyaiaadogaaeqaaOGaeyypa0Jaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadsgacaWGJbGaaiilaiaadkgaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadsgacaWGIbGaaiilaiaadogaaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamizaiaadogaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadogacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamizaiaadkgaaeqaaaaa@6064@
R
a
cdb
=
Γ
a
cb,d
−
Γ
a
cd,b
+
Γ
a
dρ
Γ
ρ
cb
−
Γ
a
bρ
Γ
ρ
cd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGJbGaamizaiaadkgaaeqaaOGaeyypa0Jaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadogacaWGIbGaaiilaiaadsgaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadogacaWGKbGaaiilaiaadkgaaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadsgacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaam4yaiaadkgaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaam4yaiaadsgaaeqaaaaa@6064@
swap some index's in the
last two, due to symmetry of the Christoffels
R
a
dbc
=
Γ
a
dc,b
−
Γ
a
bd,c
+
Γ
a
bρ
Γ
ρ
dc
−
Γ
a
cρ
Γ
ρ
bd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGKbGaamOyaiaadogaaeqaaOGaeyypa0Jaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadsgacaWGJbGaaiilaiaadkgaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGKbGaaiilaiaadogaaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamizaiaadogaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadogacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamOyaiaadsgaaeqaaaaa@6064@
R
a
cdb
=
Γ
a
bc,d
−
Γ
a
cd,b
+
Γ
a
dρ
Γ
ρ
bc
−
Γ
a
bρ
Γ
ρ
dc
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGJbGaamizaiaadkgaaeqaaOGaeyypa0Jaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaaiilaiaadsgaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadogacaWGKbGaaiilaiaadkgaaeqaaOGaey4kaSIaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadsgacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamOyaiaadogaaeqaaOGaeyOeI0Iaeu4KdC0aaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacqaHbpGCaeqaaOGaeu4KdC0aaWbaaSqabeaacqaHbpGCaaGcdaWgaaWcbaGaamizaiaadogaaeqaaaaa@6064@
and adding these to our
first Riemann gives
R
a
bcd
+
R
a
dbc
+
R
a
cdb
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgaaeqaaOGaey4kaSIaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGKbGaamOyaiaadogaaeqaaOGaey4kaSIaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGJbGaamizaiaadkgaaeqaaOGaeyypa0JaaGimaaaa@481E@
but forget about this just
for now
Back to our commentator,
with the index names realigned to our Riemann definition
[
∇
c
,
∇
d
]
x
a
=(
∇
c
∇
d
−
∇
d
∇
c
)
x
a
=(
V
;cd
−
V
;dc
)
x
a
=
R
a
bcd
x
b
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacaWGJbaabeaakiaacYcacqGHhis0daWgaaWcbaGaamizaaqabaGccaGGDbGaamiEamaaCaaaleqabaGaamyyaaaakiabg2da9iaacIcacqGHhis0daWgaaWcbaGaam4yaaqabaGccqGHhis0daWgaaWcbaGaamizaaqabaGccqGHsislcqGHhis0daWgaaWcbaGaamizaaqabaGccqGHhis0daWgaaWcbaGaam4yaaqabaGccaGGPaGaamiEamaaCaaaleqabaGaamyyaaaakiabg2da9iaacIcacaWGwbWaaSbaaSqaaiaacUdacaWGJbGaamizaaqabaGccqGHsislcaWGwbWaaSbaaSqaaiaacUdacaWGKbGaam4yaaqabaGccaGGPaGaamiEamaaCaaaleqabaGaamyyaaaakiabg2da9iaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaakiaadIhadaahaaWcbeqaaiaadkgaaaaaaa@6460@
We need to expand on this
formula a bit in order to derive our acceleration of geodesics i.e. geodesic
deviation.
Going back to our geodesic
page, we noted
∇
v
V≡
V
α
;β
V
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaSbaaSqaaiaahAhaaeqaaOGaaCOvaiabggMi6kaabAfadaahaaWcbeqaaiabeg7aHbaakmaaBaaaleaacaGG7aGaeqOSdigabeaakiaabAfadaahaaWcbeqaaiabek7aIbaaaaa@4343@
So now to work out the
commentator of the above directional derivative
[
∇
w
,
∇
v
]V=[
w
γ
∇
γ
,
v
β
∇
β
]V
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacaWH3baabeaakiaahYcacqGHhis0daWgaaWcbaGaaCODaaqabaGccaGGDbGaaCOvaiabg2da9iaacUfacaWG3bWaaWbaaSqabeaacqaHZoWzaaGccqGHhis0daWgaaWcbaGaeq4SdCgabeaakiaacYcacaWG2bWaaWbaaSqabeaacqaHYoGyaaGccqGHhis0daWgaaWcbaGaeqOSdigabeaakiaac2facaWHwbaaaa@4F81@
[
∇
w
,
∇
v
]V=
w
γ
∇
γ
v
β
∇
β
v
α
−
v
β
∇
β
w
γ
∇
γ
v
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacaWH3baabeaakiaahYcacqGHhis0daWgaaWcbaGaaCODaaqabaGccaGGDbGaaCOvaiabg2da9iaadEhadaahaaWcbeqaaiabeo7aNbaakiabgEGirpaaBaaaleaacqaHZoWzaeqaaOGaamODamaaCaaaleqabaGaeqOSdigaaOGaey4bIe9aaSbaaSqaaiabek7aIbqabaGccaWG2bWaaWbaaSqabeaacqaHXoqyaaGccqGHsislcaWG2bWaaWbaaSqabeaacqaHYoGyaaGccqGHhis0daWgaaWcbaGaeqOSdigabeaakiaadEhadaahaaWcbeqaaiabeo7aNbaakiabgEGirpaaBaaaleaacqaHZoWzaeqaaOGaamODamaaCaaaleqabaGaeqySdegaaaaa@5F24@
[
∇
w
,
∇
v
]V=
w
γ
v
β
∇
γ
∇
β
v
α
−
w
γ
(
∇
β
v
α
)(
∇
γ
v
β
)
−
v
β
w
γ
∇
β
∇
γ
v
α
+
v
β
(
∇
γ
v
α
)(
∇
β
w
γ
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaGGBbGaey4bIe9aaSbaaSqaaiaahEhaaeqaaOGaaCilaiabgEGirpaaBaaaleaacaWH2baabeaakiaac2facaWHwbGaeyypa0Jaam4DamaaCaaaleqabaGaeq4SdCgaaOGaamODamaaCaaaleqabaGaeqOSdigaaOGaey4bIe9aaSbaaSqaaiabeo7aNbqabaGccqGHhis0daWgaaWcbaGaeqOSdigabeaakiaadAhadaahaaWcbeqaaiabeg7aHbaakiabgkHiTiaadEhadaahaaWcbeqaaiabeo7aNbaakiaacIcacqGHhis0daWgaaWcbaGaeqOSdigabeaakiaadAhadaahaaWcbeqaaiabeg7aHbaakiaacMcacaGGOaGaey4bIe9aaSbaaSqaaiabeo7aNbqabaGccaWG2bWaaWbaaSqabeaacqaHYoGyaaGccaGGPaaabaGaeyOeI0IaamODamaaCaaaleqabaGaeqOSdigaaOGaam4DamaaCaaaleqabaGaeq4SdCgaaOGaey4bIe9aaSbaaSqaaiabek7aIbqabaGccqGHhis0daWgaaWcbaGaeq4SdCgabeaakiaadAhadaahaaWcbeqaaiabeg7aHbaakiabgUcaRiaadAhadaahaaWcbeqaaiabek7aIbaakiaacIcacqGHhis0daWgaaWcbaGaeq4SdCgabeaakiaadAhadaahaaWcbeqaaiabeg7aHbaakiaacMcacaGGOaGaey4bIe9aaSbaaSqaaiabek7aIbqabaGccaWG3bWaaWbaaSqabeaacqaHZoWzaaGccaGGPaaaaaa@84E7@
and swapping gamma with
alpha in the 2nd product term
[
∇
w
,
∇
v
]V=
w
γ
v
β
∇
γ
∇
β
v
α
−
w
β
(
∇
γ
v
α
)(
∇
β
v
γ
)
−
v
β
w
γ
∇
β
∇
γ
v
α
+
v
β
(
∇
γ
v
α
)(
∇
β
w
γ
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacaGGBbGaey4bIe9aaSbaaSqaaiaahEhaaeqaaOGaaCilaiabgEGirpaaBaaaleaacaWH2baabeaakiaac2facaWHwbGaeyypa0Jaam4DamaaCaaaleqabaGaeq4SdCgaaOGaamODamaaCaaaleqabaGaeqOSdigaaOGaey4bIe9aaSbaaSqaaiabeo7aNbqabaGccqGHhis0daWgaaWcbaGaeqOSdigabeaakiaadAhadaahaaWcbeqaaiabeg7aHbaakiabgkHiTiaadEhadaahaaWcbeqaaiabek7aIbaakiaacIcacqGHhis0daWgaaWcbaGaeq4SdCgabeaakiaadAhadaahaaWcbeqaaiabeg7aHbaakiaacMcacaGGOaGaey4bIe9aaSbaaSqaaiabek7aIbqabaGccaWG2bWaaWbaaSqabeaacqaHZoWzaaGccaGGPaaabaGaeyOeI0IaamODamaaCaaaleqabaGaeqOSdigaaOGaam4DamaaCaaaleqabaGaeq4SdCgaaOGaey4bIe9aaSbaaSqaaiabek7aIbqabaGccqGHhis0daWgaaWcbaGaeq4SdCgabeaakiaadAhadaahaaWcbeqaaiabeg7aHbaakiabgUcaRiaadAhadaahaaWcbeqaaiabek7aIbaakiaacIcacqGHhis0daWgaaWcbaGaeq4SdCgabeaakiaadAhadaahaaWcbeqaaiabeg7aHbaakiaacMcacaGGOaGaey4bIe9aaSbaaSqaaiabek7aIbqabaGccaWG3bWaaWbaaSqabeaacqaHZoWzaaGccaGGPaaaaaa@84E7@
[
∇
w
,
∇
v
]V=
w
γ
v
β
∇
γ
∇
β
v
α
−
v
β
w
γ
∇
β
∇
γ
v
α
−(
∇
γ
v
α
)(
w
β
∇
β
v
γ
−
v
β
∇
β
w
γ
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacaWH3baabeaakiaahYcacqGHhis0daWgaaWcbaGaaCODaaqabaGccaGGDbGaaCOvaiabg2da9iaadEhadaahaaWcbeqaaiabeo7aNbaakiaadAhadaahaaWcbeqaaiabek7aIbaakiabgEGirpaaBaaaleaacqaHZoWzaeqaaOGaey4bIe9aaSbaaSqaaiabek7aIbqabaGccaWG2bWaaWbaaSqabeaacqaHXoqyaaGccqGHsislcaWG2bWaaWbaaSqabeaacqaHYoGyaaGccaWG3bWaaWbaaSqabeaacqaHZoWzaaGccqGHhis0daWgaaWcbaGaeqOSdigabeaakiabgEGirpaaBaaaleaacqaHZoWzaeqaaOGaamODamaaCaaaleqabaGaeqySdegaaOGaeyOeI0IaaiikaiabgEGirpaaBaaaleaacqaHZoWzaeqaaOGaamODamaaCaaaleqabaGaeqySdegaaOGaaiykaiaacIcacaWG3bWaaWbaaSqabeaacqaHYoGyaaGccqGHhis0daWgaaWcbaGaeqOSdigabeaakiaadAhadaahaaWcbeqaaiabeo7aNbaakiabgkHiTiaadAhadaahaaWcbeqaaiabek7aIbaakiabgEGirpaaBaaaleaacqaHYoGyaeqaaOGaam4DamaaCaaaleqabaGaeq4SdCgaaOGaaiykaaaa@7C02@
[
∇
w
,
∇
v
]V=
w
γ
v
β
(
∇
γ
∇
β
v
α
−
∇
β
∇
γ
v
α
)−(
∇
γ
v
α
)(
w
β
∇
β
v
γ
−
v
β
∇
β
w
γ
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacaWH3baabeaakiaahYcacqGHhis0daWgaaWcbaGaaCODaaqabaGccaGGDbGaaCOvaiabg2da9iaadEhadaahaaWcbeqaaiabeo7aNbaakiaadAhadaahaaWcbeqaaiabek7aIbaakiaacIcacqGHhis0daWgaaWcbaGaeq4SdCgabeaakiabgEGirpaaBaaaleaacqaHYoGyaeqaaOGaamODamaaCaaaleqabaGaeqySdegaaOGaeyOeI0Iaey4bIe9aaSbaaSqaaiabek7aIbqabaGccqGHhis0daWgaaWcbaGaeq4SdCgabeaakiaadAhadaahaaWcbeqaaiabeg7aHbaakiaacMcacqGHsislcaGGOaGaey4bIe9aaSbaaSqaaiabeo7aNbqabaGccaWG2bWaaWbaaSqabeaacqaHXoqyaaGccaGGPaGaaiikaiaadEhadaahaaWcbeqaaiabek7aIbaakiabgEGirpaaBaaaleaacqaHYoGyaeqaaOGaamODamaaCaaaleqabaGaeq4SdCgaaOGaeyOeI0IaamODamaaCaaaleqabaGaeqOSdigaaOGaey4bIe9aaSbaaSqaaiabek7aIbqabaGccaWG3bWaaWbaaSqabeaacqaHZoWzaaGccaGGPaaaaa@77AE@
[
∇
w
,
∇
v
]V=
w
γ
v
β
[
∇
γ
,
∇
β
]
v
α
−(
∇
γ
v
α
)(
∇
w
V−
∇
v
W)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacaWH3baabeaakiaahYcacqGHhis0daWgaaWcbaGaaCODaaqabaGccaGGDbGaaCOvaiabg2da9iaadEhadaahaaWcbeqaaiabeo7aNbaakiaadAhadaahaaWcbeqaaiabek7aIbaakiaacUfacqGHhis0daWgaaWcbaGaeq4SdCgabeaakiaacYcacqGHhis0daWgaaWcbaGaeqOSdigabeaakiaac2facaWG2bWaaWbaaSqabeaacqaHXoqyaaGccqGHsislcaGGOaGaey4bIe9aaSbaaSqaaiabeo7aNbqabaGccaWG2bWaaWbaaSqabeaacqaHXoqyaaGccaGGPaGaaiikaiabgEGirpaaBaaaleaacaWH3baabeaakiaahAfacqGHsislcqGHhis0daWgaaWcbaGaaCODaaqabaGccaWHxbGaaiykaaaa@6369@
[
∇
w
,
∇
v
]V=
w
γ
v
β
v
b
R
α
bγβ
−(∇V)(
∇
w
V−
∇
v
W)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacaWH3baabeaakiaahYcacqGHhis0daWgaaWcbaGaaCODaaqabaGccaGGDbGaaCOvaiabg2da9iaadEhadaahaaWcbeqaaiabeo7aNbaakiaadAhadaahaaWcbeqaaiabek7aIbaakiaadAhadaahaaWcbeqaaiaadkgaaaGccaWGsbWaaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaamOyaiabeo7aNjabek7aIbqabaGccqGHsislcaGGOaGaey4bIeTaaCOvaiaacMcacaGGOaGaey4bIe9aaSbaaSqaaiaahEhaaeqaaOGaaCOvaiabgkHiTiabgEGirpaaBaaaleaacaWH2baabeaakiaahEfacaGGPaaaaa@5CC4@
but for
w
α
=
∂
x
α
∂λ
and
v
β
=
∂
x
β
∂τ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaCaaaleqabaGaeqySdegaaOGaeyypa0ZaaSaaaeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHciITcqaH7oaBaaGaaeiiaiaabggacaqGUbGaaeizaiaabccacaWG2bWaaWbaaSqabeaacqaHYoGyaaGccqGH9aqpdaWcaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiabgkGi2kabes8a0baaaaa@5080@
i.e. w is an affine parametized connecting vector and v is our velocity, the last term is
zero, via
∇
w
v−
∇
v
w=
w
α
v
β
;α
−
v
β
w
α
;β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaSbaaSqaaiaahEhaaeqaaOGaaCODaiabgkHiTiabgEGirpaaBaaaleaacaWH2baabeaakiaahEhacqGH9aqpcaWG3bWaaWbaaSqabeaacqaHXoqyaaGccaWG2bWaaWbaaSqabeaacqaHYoGyaaGcdaWgaaWcbaGaai4oaiabeg7aHbqabaGccqGHsislcaWG2bWaaWbaaSqabeaacqaHYoGyaaGccaWG3bWaaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaai4oaiabek7aIbqabaaaaa@50B4@
∇
w
v−
∇
v
w=
w
α
(
∂
v
β
∂
x
α
+
Γ
β
εα
v
ε
)
−
v
β
(
∂
w
α
∂
x
β
+
Γ
α
εβ
w
α
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacqGHhis0daWgaaWcbaGaaC4DaaqabaGccaWH2bGaeyOeI0Iaey4bIe9aaSbaaSqaaiaahAhaaeqaaOGaaC4Daiabg2da9iaadEhadaahaaWcbeqaaiabeg7aHbaakiaacIcadaWcaaqaaiabgkGi2kaadAhadaahaaWcbeqaaiabek7aIbaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiabeg7aHbaaaaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabek7aIbaakmaaBaaaleaacqaH1oqzcqaHXoqyaeqaaOGaamODamaaCaaaleqabaGaeqyTdugaaOGaaiykaaqaaiabgkHiTiaadAhadaahaaWcbeqaaiabek7aIbaakiaacIcadaWcaaqaaiabgkGi2kaadEhadaahaaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiabek7aIbaaaaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeg7aHbaakmaaBaaaleaacqaH1oqzcqaHYoGyaeqaaOGaam4DamaaCaaaleqabaGaeqySdegaaOGaaiykaaaaaa@6E97@
∇
w
v−
∇
v
w=
∂
x
α
∂λ
∂
v
β
∂
x
α
+
Γ
β
εα
v
ε
w
α
−
∂
x
β
∂τ
∂
w
α
∂
x
β
−
Γ
α
εβ
v
β
w
ε
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacqGHhis0daWgaaWcbaGaaC4DaaqabaGccaWH2bGaeyOeI0Iaey4bIe9aaSbaaSqaaiaahAhaaeqaaOGaaC4Daiabg2da9maalaaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqySdegaaaGcbaGaeyOaIyRaeq4UdWgaamaalaaabaGaeyOaIyRaamODamaaCaaaleqabaGaeqOSdigaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaeqySdegaaaaakiabgUcaRiabfo5ahnaaCaaaleqabaGaeqOSdigaaOWaaSbaaSqaaiabew7aLjabeg7aHbqabaGccaWG2bWaaWbaaSqabeaacqaH1oqzaaGccaWG3bWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHsisldaWcaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiabgkGi2kabes8a0baadaWcaaqaaiabgkGi2kaadEhadaahaaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiabek7aIbaaaaGccqGHsislcqqHtoWrdaahaaWcbeqaaiabeg7aHbaakmaaBaaaleaacqaH1oqzcqaHYoGyaeqaaOGaamODamaaCaaaleqabaGaeqOSdigaaOGaam4DamaaCaaaleqabaGaeqyTdugaaaaaaa@7AC7@
∇
w
v−
∇
v
w=
∂
v
β
∂λ
+
Γ
β
εα
v
ε
w
α
−
∂
w
α
∂τ
−
Γ
β
εα
v
α
w
ε
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacqGHhis0daWgaaWcbaGaaC4DaaqabaGccaWH2bGaeyOeI0Iaey4bIe9aaSbaaSqaaiaahAhaaeqaaOGaaC4Daiabg2da9maalaaabaGaeyOaIyRaamODamaaCaaaleqabaGaeqOSdigaaaGcbaGaeyOaIyRaeq4UdWgaaiabgUcaRiabfo5ahnaaCaaaleqabaGaeqOSdigaaOWaaSbaaSqaaiabew7aLjabeg7aHbqabaGccaWG2bWaaWbaaSqabeaacqaH1oqzaaGccaWG3bWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHsisldaWcaaqaaiabgkGi2kaadEhadaahaaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kabes8a0baacqGHsislcqqHtoWrdaahaaWcbeqaaiabek7aIbaakmaaBaaaleaacqaH1oqzcqaHXoqyaeqaaOGaamODamaaCaaaleqabaGaeqySdegaaOGaam4DamaaCaaaleqabaGaeqyTdugaaaaaaa@69BD@
where alpha and beta has
been swapped in the last r term
∇
w
v−
∇
v
w=
∂
x
β
∂τ∂λ
+
Γ
β
εα
v
ε
w
α
−
∂
w
α
∂λ∂τ
−
Γ
β
αε
v
ε
w
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaabbeaacqGHhis0daWgaaWcbaGaaC4DaaqabaGccaWH2bGaeyOeI0Iaey4bIe9aaSbaaSqaaiaahAhaaeqaaOGaaC4Daiabg2da9maalaaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaeyOaIyRaeqiXdqNaeyOaIyRaeq4UdWgaaiabgUcaRiabfo5ahnaaCaaaleqabaGaeqOSdigaaOWaaSbaaSqaaiabew7aLjabeg7aHbqabaGccaWG2bWaaWbaaSqabeaacqaH1oqzaaGccaWG3bWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHsisldaWcaaqaaiabgkGi2kaadEhadaahaaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kabeU7aSjabgkGi2kabes8a0baacqGHsislcqqHtoWrdaahaaWcbeqaaiabek7aIbaakmaaBaaaleaacqaHXoqycqaH1oqzaeqaaOGaamODamaaCaaaleqabaGaeqyTdugaaOGaam4DamaaCaaaleqabaGaeqySdegaaaaaaa@7004@
where epsilon and alpha has
been swapped in the last r term, thus the commentator of w and v is zero,
therefor
[
∇
w
,
∇
v
]V=
w
γ
v
β
v
b
R
α
bγβ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiabgEGirpaaBaaaleaacaWH3baabeaakiaahYcacqGHhis0daWgaaWcbaGaaCODaaqabaGccaGGDbGaaCOvaiabg2da9iaadEhadaahaaWcbeqaaiabeo7aNbaakiaadAhadaahaaWcbeqaaiabek7aIbaakiaadAhadaahaaWcbeqaaiaadkgaaaGccaWGsbWaaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaamOyaiabeo7aNjabek7aIbqabaaaaa@4E93@
Acceleration
or Geodesic Deviation
The next task, is to show
why the Riemann tensor determines the acceleration of the geodesics, i.e. why
a
w
=
D
2
w
a
D
λ
2
=
R
a
bcd
v
b
w
c
v
d
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaBaaaleaacaWG3baabeaakiabg2da9maalaaabaGaamiramaaCaaaleqabaGaaGOmaaaakiaadEhadaahaaWcbeqaaiaadggaaaaakeaacaWGebGaeq4UdW2aaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaahkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaakiaadAhadaahaaWcbeqaaiaadkgaaaGccaWG3bWaaWbaaSqabeaacaWGJbaaaOGaamODamaaCaaaleqabaGaamizaaaaaaa@4C9C@
or equivalently
a=
∇
v
∇
v
w=
R
a
bcd
v
b
w
c
v
d
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyaiabg2da9iabgEGirpaaBaaaleaacaGG2baabeaakiabgEGirpaaBaaaleaacaGG2baabeaakiaacEhacqGH9aqpcaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaamizaaqabaGccaWG2bWaaWbaaSqabeaacaWGIbaaaOGaam4DamaaCaaaleqabaGaam4yaaaakiaadAhadaahaaWcbeqaaiaadsgaaaaaaa@4A78@
To do this we need to show
the following results, where D is the covariant derivative operator and λ is a
fine parameter indeed, e.g. x=x(λ),
t=t(λ).,
If we go back to our
geodesic equation for acceleration, which sort of defines what is meant by
acceleration in generalized co-ordinates.
d
2
x
μ
d
τ
2
+
Γ
μ
βγ
d
x
β
dτ
d
x
γ
dτ
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaCaaaleqabaGaeqiVd0gaaaGcbaGaamizaiabes8a0naaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcqqHtoWrdaahaaWcbeqaaiabeY7aTbaakmaaBaaaleaacqaHYoGycqaHZoWzaeqaaOWaaSaaaeaacaWGKbGaamiEamaaCaaaleqabaGaeqOSdigaaaGcbaGaamizaiabes8a0baadaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacqaHZoWzaaaakeaacaWGKbGaeqiXdqhaaiabg2da9iaaicdaaaa@54DE@
which can be written as
∇
v
V≡
V
α
;β
V
β
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaSbaaSqaaiaahAhaaeqaaOGaaCOvaiabggMi6kaabAfadaahaaWcbeqaaiabeg7aHbaakmaaBaaaleaacaGG7aGaeqOSdigabeaakiaabAfadaahaaWcbeqaaiabek7aIbaakiabg2da9iaaicdaaaa@450D@
So we can obviously write,
actually this seems to pick something out of nothing, almost.
∇
w
∇
v
V=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaSbaaSqaaiaahEhaaeqaaOGaey4bIe9aaSbaaSqaaiaahAhaaeqaaOGaaCOvaiabg2da9iaaicdaaaa@3E0A@
∇
v
∇
w
V+
∇
w
∇
v
V−
∇
v
∇
w
V=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaey4bIe9aaSbaaSqaaiaadEhaaeqaaOGaaCOvaiabgUcaRiabgEGirpaaBaaaleaacaWG3baabeaakiabgEGirpaaBaaaleaacaWH2baabeaakiaahAfacqGHsislcqGHhis0daWgaaWcbaGaamODaaqabaGccqGHhis0daWgaaWcbaGaam4DaaqabaGccaWHwbGaeyypa0JaaGimaaaa@4C71@
∇
v
∇
w
V+[
∇
w
,
∇
v
]V=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaey4bIe9aaSbaaSqaaiaadEhaaeqaaOGaaCOvaiabgUcaRiaacUfacqGHhis0daWgaaWcbaGaam4DaaqabaGccaGGSaGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaaiyxaiaahAfacqGH9aqpcaaIWaaaaa@47A2@
∇
v
∇
v
W+[
∇
w
,
∇
v
]V+
∇
v
∇
w
V−
∇
v
∇
v
W=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaaC4vaiabgUcaRiaacUfacqGHhis0daWgaaWcbaGaam4DaaqabaGccaGGSaGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaaiyxaiaahAfacqGHRaWkcqGHhis0daWgaaWcbaGaamODaaqabaGccqGHhis0daWgaaWcbaGaam4DaaqabaGccaWHwbGaeyOeI0Iaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaaC4vaiabg2da9iaaicdaaaa@560D@
∇
v
∇
v
W+[
∇
w
,
∇
v
]V+
∇
v
(
∇
w
V−
∇
v
W)=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaaC4vaiabgUcaRiaacUfacqGHhis0daWgaaWcbaGaam4DaaqabaGccaGGSaGaey4bIe9aaSbaaSqaaiaadAhaaeqaaOGaaiyxaiaahAfacqGHRaWkcqGHhis0daWgaaWcbaGaamODaaqabaGccaGGOaGaey4bIe9aaSbaaSqaaiaadEhaaeqaaOGaaCOvaiabgkHiTiabgEGirpaaBaaaleaacaWG2baabeaakiaahEfacaGGPaGaeyypa0JaaGimaaaa@54AF@
but, from up above, the last
term is zero so finally then, using our extended commentator formula
a=
∇
v
∇
v
w=
R
a
bcd
v
b
w
c
v
d
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyaiabg2da9iabgEGirpaaBaaaleaacaGG2baabeaakiabgEGirpaaBaaaleaacaGG2baabeaakiaacEhacqGH9aqpcaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaamizaaqabaGccaWG2bWaaWbaaSqabeaacaWGIbaaaOGaam4DamaaCaaaleqabaGaam4yaaaakiaadAhadaahaaWcbeqaaiaadsgaaaaaaa@4A78@
and we seem to have lost a
minus sign, so we'll leave that as an exercise for the reader.
Bianchi
Identity and the Einstein Tensor
We have from above:
(
V
;cd
−
V
;dc
)
x
a
=
R
a
bcd
x
b
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadAfadaWgaaWcbaGaai4oaiaadogacaWGKbaabeaakiabgkHiTiaadAfadaWgaaWcbaGaai4oaiaadsgacaWGJbaabeaakiaacMcacaWG4bWaaWbaaSqabeaacaWGHbaaaOGaeyypa0JaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgaaeqaaOGaamiEamaaCaaaleqabaGaamOyaaaaaaa@498F@
or
x
a
;cd
−
x
a
;dc
=
x
b
R
a
bcd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaam4yaiaadsgaaeqaaOGaeyOeI0IaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaamizaiaadogaaeqaaOGaeyypa0JaamiEamaaCaaaleqabaGaamOyaaaakiaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaaaaa@489A@
Which means that taking the
covariant 2nd derivative, in different orders, does not give the
same result, as do ordinary derivatives.
It should be no surprise
that, in the same manner as the covariant derivative itself, that
x
a;cd
−
x
a;dc
=−
x
a
R
a
bcd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBaaaleaacaWGHbGaai4oaiaadogacaWGKbaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamyyaiaacUdacaWGKbGaam4yaaqabaGccqGH9aqpcqGHsislcaWG4bWaaSbaaSqaaiaadggaaeqaaOGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgaaeqaaaaa@4917@
This can be seen from
inspection from the initial derivation equation, and that again, just as in the
covariant derivative case, where each tensor order index generates its own
Christoffel symbol term, higher order tensors generate additional Riemann terms
thus:
x
a
e
;cd
−
x
a
e
;dc
=
x
b
e
R
a
bcd
−
x
a
b
R
b
ecd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGLbaabeaakmaaBaaaleaacaGG7aGaam4yaiaadsgaaeqaaOGaeyOeI0IaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGLbaabeaakmaaBaaaleaacaGG7aGaamizaiaadogaaeqaaOGaeyypa0JaamiEamaaCaaaleqabaGaamOyaaaakmaaBaaaleaacaWGLbaabeaakiaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaakiabgkHiTiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaaqabaGccaWGsbWaaWbaaSqabeaacaWGIbaaaOWaaSbaaSqaaiaadwgacaWGJbGaamizaaqabaaaaa@5504@
Now differentiate
x
a
;cd
−
x
a
;dc
=
x
b
R
a
bcd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaam4yaiaadsgaaeqaaOGaeyOeI0IaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaamizaiaadogaaeqaaOGaeyypa0JaamiEamaaCaaaleqabaGaamOyaaaakiaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaaaaa@489A@
(
x
a
;cd
−
x
a
;dc
)
;e
=
x
b
;e
R
a
bcd
+
x
b
R
a
bcd;e
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadogacaWGKbaabeaakiabgkHiTiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadsgacaWGJbaabeaakiaacMcadaWgaaWcbaGaai4oaiaadwgaaeqaaOGaeyypa0JaamiEamaaCaaaleqabaGaamOyaaaakmaaBaaaleaacaGG7aGaamyzaaqabaGccaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaamizaaqabaGccqGHRaWkcaWG4bWaaWbaaSqabeaacaWGIbaaaOGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgacaGG7aGaamyzaaqabaaaaa@5739@
Now set
x
a
e
−>−
x
a
;e
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGLbaabeaakiabgkHiTiabg6da+iabgkHiTiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadwgaaeqaaaaa@3FFF@
And replace into our 2nd
term Riemann expression.
−
(
x
a
;e
)
;cd
+
(
x
a
;e
)
;dc
=−(
x
b
;e
)
R
a
bcd
+(
x
a
;b
)
R
b
ecd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaiikaiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadwgaaeqaaOGaaiykamaaBaaaleaacaGG7aGaam4yaiaadsgaaeqaaOGaey4kaSIaaiikaiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadwgaaeqaaOGaaiykamaaBaaaleaacaGG7aGaamizaiaadogaaeqaaOGaeyypa0JaeyOeI0IaaiikaiaadIhadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaai4oaiaadwgaaeqaaOGaaiykaiaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaakiabgUcaRiaacIcacaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGIbaabeaakiaacMcacaWGsbWaaWbaaSqabeaacaWGIbaaaOWaaSbaaSqaaiaadwgacaWGJbGaamizaaqabaaaaa@5F28@
or
−
x
a
;ecd
+
x
a
;edc
=−
x
b
;e
R
a
bcd
+
x
a
;b
R
b
ecd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaamyzaiaadogacaWGKbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadwgacaWGKbGaam4yaaqabaGccqGH9aqpcqGHsislcaWG4bWaaWbaaSqabeaacaWGIbaaaOWaaSbaaSqaaiaacUdacaWGLbaabeaakiaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadkgaaeqaaOGaamOuamaaCaaaleqabaGaamOyaaaakmaaBaaaleaacaWGLbGaam4yaiaadsgaaeqaaaaa@57DA@
`
and bringing down from above
x
a
;cde
−
x
a
;dce
=
x
b
;e
R
a
bcd
+
x
b
R
a
bcd;e
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaam4yaiaadsgacaWGLbaabeaakiabgkHiTiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadsgacaWGJbGaamyzaaqabaGccqGH9aqpcaWG4bWaaWbaaSqabeaacaWGIbaaaOWaaSbaaSqaaiaacUdacaWGLbaabeaakiaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadogacaWGKbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadkgaaaGccaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaamizaiaacUdacaWGLbaabeaaaaa@55D5@
Now a little bit of index
swapping on the above two equations:
−
x
a
;ecd
+
x
a
;edc
=−
x
a
;e
R
b
acd
+
x
a
;b
R
b
ecd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaamyzaiaadogacaWGKbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadwgacaWGKbGaam4yaaqabaGccqGH9aqpcqGHsislcaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGLbaabeaakiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamyyaiaadogacaWGKbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadkgaaeqaaOGaamOuamaaCaaaleqabaGaamOyaaaakmaaBaaaleaacaWGLbGaam4yaiaadsgaaeqaaaaa@57D9@
x
a
;cde
−
x
a
;dce
=
x
a
;e
R
b
acd
+
x
b
R
a
bcd;e
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaam4yaiaadsgacaWGLbaabeaakiabgkHiTiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadsgacaWGJbGaamyzaaqabaGccqGH9aqpcaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGLbaabeaakiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamyyaiaadogacaWGKbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadkgaaaGccaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaamizaiaacUdacaWGLbaabeaaaaa@55D4@
Now, if these last two
equations are cycled in the last 3 index of Riemann and the 6 added together:
−
x
a
;ecd
+
x
a
;edc
=−
x
a
;e
R
b
acd
+
x
a
;b
R
b
ecd
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaamyzaiaadogacaWGKbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadwgacaWGKbGaam4yaaqabaGccqGH9aqpcqGHsislcaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGLbaabeaakiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamyyaiaadogacaWGKbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadkgaaeqaaOGaamOuamaaCaaaleqabaGaamOyaaaakmaaBaaaleaacaWGLbGaam4yaiaadsgaaeqaaaaa@57D9@
−
x
a
;dec
+
x
a
;dce
=−
x
a
;d
R
b
aec
+
x
a
;b
R
b
dec
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaamizaiaadwgacaWGJbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadsgacaWGJbGaamyzaaqabaGccqGH9aqpcqGHsislcaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGKbaabeaakiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamyyaiaadwgacaWGJbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadkgaaeqaaOGaamOuamaaCaaaleqabaGaamOyaaaakmaaBaaaleaacaWGKbGaamyzaiaadogaaeqaaaaa@57D9@
−
x
a
;cde
+
x
a
;ced
=−
x
a
;c
R
b
ade
+
x
a
;b
R
b
cde
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaam4yaiaadsgacaWGLbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadogacaWGLbGaamizaaqabaGccqGH9aqpcqGHsislcaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGJbaabeaakiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamyyaiaadsgacaWGLbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadkgaaeqaaOGaamOuamaaCaaaleqabaGaamOyaaaakmaaBaaaleaacaWGJbGaamizaiaadwgaaeqaaaaa@57D9@
x
a
;cde
−
x
a
;dce
=
x
a
;e
R
b
acd
+
x
b
R
a
bcd;e
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaam4yaiaadsgacaWGLbaabeaakiabgkHiTiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadsgacaWGJbGaamyzaaqabaGccqGH9aqpcaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGLbaabeaakiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamyyaiaadogacaWGKbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadkgaaaGccaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaamizaiaacUdacaWGLbaabeaaaaa@55D4@
x
a
;ecd
−
x
a
;ced
=
x
a
;d
R
b
aec
+
x
b
R
a
bec;d
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaamyzaiaadogacaWGKbaabeaakiabgkHiTiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadogacaWGLbGaamizaaqabaGccqGH9aqpcaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGKbaabeaakiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamyyaiaadwgacaWGJbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadkgaaaGccaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGLbGaam4yaiaacUdacaWGKbaabeaaaaa@55D4@
x
a
;dec
−
x
a
;edc
=
x
a
;c
R
b
ade
+
x
b
R
a
bde;c
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaGG7aGaamizaiaadwgacaWGJbaabeaakiabgkHiTiaadIhadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaai4oaiaadwgacaWGKbGaam4yaaqabaGccqGH9aqpcaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGJbaabeaakiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamyyaiaadsgacaWGLbaabeaakiabgUcaRiaadIhadaahaaWcbeqaaiaadkgaaaGccaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGKbGaamyzaiaacUdacaWGJbaabeaaaaa@55D4@
Hence:
x
b
(
R
a
bcd;e
+
R
a
bec;d
+
R
a
bde;c
)+(
R
b
ecd
+
R
b
dec
+
R
b
cde
)
x
a
;b
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaamOyaaaakiaacIcacaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGJbGaamizaiaacUdacaWGLbaabeaakiabgUcaRiaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadwgacaWGJbGaai4oaiaadsgaaeqaaOGaey4kaSIaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaamizaiaadwgacaGG7aGaam4yaaqabaGccaGGPaGaey4kaSIaaiikaiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamyzaiaadogacaWGKbaabeaakiabgUcaRiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaamizaiaadwgacaWGJbaabeaakiabgUcaRiaadkfadaahaaWcbeqaaiaadkgaaaGcdaWgaaWcbaGaam4yaiaadsgacaWGLbaabeaakiaacMcacaWG4bWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaacUdacaWGIbaabeaakiabg2da9iaaicdaaaa@6734@
But the 2nd term
is zero from the result up the page, somewhere…
Hence:
R
a
bcd;e
+
R
a
bec;d
+
R
a
bde;c
=0
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaCaaaleqabaGaamyyaaaakmaaBaaaleaacaWGIbGaam4yaiaadsgacaGG7aGaamyzaaqabaGccqGHRaWkcaWGsbWaaWbaaSqabeaacaWGHbaaaOWaaSbaaSqaaiaadkgacaWGLbGaam4yaiaacUdacaWGKbaabeaakiabgUcaRiaadkfadaahaaWcbeqaaiaadggaaaGcdaWgaaWcbaGaamOyaiaadsgacaWGLbGaai4oaiaadogaaeqaaOGaeyypa0JaaGimaaaa@4D19@
This is the Bianchi identity
that is needed in the construction of the Einstein Tensor.
© Kevin Aylward 2000 - 2022
All rights reserved
The information on the page may be
reproduced
providing that this source is acknowledged.
Website last modified 1st January
2022
http://www.kevinaylward.co.uk/gr/index.html
www.kevinaylward.co.uk