General Relativity For
Tellytubbys
The Tensor
Sir Kevin Aylward B.Sc.,
Warden of the Kings Ale
Back
to the Contents section
Vector
Refresher
A vector is a tensor of rank
one, what a tensor is will shortly become clearer, so bare with us for a bit
please, but in short, a tensor may be thought of as a product of vectors with
"transformation law" restrictions. There are many other descriptions,
but we'll leave that for now.
A vector can be described as
numbers or functions pointing in certain directions, i.e.
V=
a
1
e
1
+
a
2
e
2
+
a
3
e
3
+...
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaiabg2da9iaadggadaahaaWcbeqaaiaaigdaaaGccaWHLbWaaSbaaSqaaiaahgdaaeqaaOGaey4kaSIaamyyamaaCaaaleqabaGaaGOmaaaakiaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGHbWaaWbaaSqabeaacaaIZaaaaOGaaCyzamaaBaaaleaacaaIZaaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@47BF@
the a's are the numbers or
functions and are called the "components" of the "basis
vectors" which are the e's in
the above. Note the position of the indexes for the components and basis
vectors. This form of a vector is called the contravariant form, why?, beats
me.
The other form, below, is
called the covariant form, for the same reason as above.
V=
a
1
e
1
+
a
2
e
2
+
a
3
e
3
+...
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaiabg2da9iaadggadaWgaaWcbaGaaGymaaqabaGccaWHLbWaaWbaaSqabeaacaaIXaaaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaaabeaakiaahwgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaaCyzamaaCaaaleqabaGaaG4maaaakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@47C0@
By definition the
e
α
and
e
β
are related by the condition
e
α
.
e
β
=1 forα=β and
e
α
.
e
β
=0 for α≠β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabMhacaqGGaGaaeizaiaabwgacaqGMbGaaeyAaiaab6gacaqGPbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaCyzamaaCaaaleqabaGaeqySdegaaOGaaeiiaiaabggacaqGUbGaaeizaiaabccacaWHLbWaaSbaaSqaaiabek7aIbqabaGccaqGGaGaaeyyaiaabkhacaqGLbGaaeiiaiaabkhacaqGLbGaaeiBaiaabggacaqG0bGaaeyzaiaabsgacaqGGaGaaeOyaiaabMhacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabogacaqGVbGaaeOBaiaabsgacaqGPbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaWHLbWaaWbaaSqabeaacqaHXoqyaaGccaGGUaGaaCyzamaaBaaaleaacqaHYoGyaeqaaOGaeyypa0JaaGymaiaabccacaqGMbGaae4BaiaabkhacqaHXoqycqGH9aqpcqaHYoGycaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaahwgadaahaaWcbeqaaiabeg7aHbaakiaac6cacaWHLbWaaSbaaSqaaiabek7aIbqabaGccqGH9aqpcaaIWaGaaeiiaiaabAgacaqGVbGaaeOCaiaabccacqaHXoqycqGHGjsUcqaHYoGyaaa@8E1F@
These two forms of the same
vector are called reciprocal to each other, and once again, always pay
attention to what indexes are upstairs and downstairs, it will greatly simplify
things if this is recognized at the outset as of deep significance.
First
Important Notes:
1) There is no limit,
mathematically to the number of terms, in G.R. there are 4.
2) The basis vectors are not constant or unit vectors in general.
Summation
Convention
Instead of writing
V=
a
1
e
1
+
a
2
e
2
+
a
3
e
3
+...
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaiabg2da9iaadggadaahaaWcbeqaaiaaigdaaaGccaWHLbWaaSbaaSqaaiaahgdaaeqaaOGaey4kaSIaamyyamaaCaaaleqabaGaaGOmaaaakiaahwgadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGHbWaaWbaaSqabeaacaaIZaaaaOGaaCyzamaaBaaaleaacaaIZaaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaaaa@47BF@
We could write
V=Σ
a
α
e
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaiabg2da9iabfo6atjaadggadaahaaWcbeqaaiabeg7aHbaakiaahwgadaWgaaWcbaGaeqySdegabeaaaaa@3ED2@
But this is shortened to
V=
a
α
e
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaiabg2da9iaadggadaahaaWcbeqaaiabeg7aHbaakiaahwgadaWgaaWcbaGaeqySdegabeaaaaa@3D4E@
That is, the sum sign is
dropped, but it is understood that whenever an index appears twice in any
product, then a summation is inherently implied. Unless otherwise specified, all such products imply an equation with
sums of values
The
Metric
An element of arc length, by
drawing a little diagram my little Tellytubbys, in the direction of the basis
can be expressed as.
d
x
α
=
e
α
d
x
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCizaiaahIhadaahaaWcbeqaaiabeg7aHbaakiabg2da9iaahwgadaWgaaWcbaGaeqySdegabeaakiaadsgacaWG4bWaaWbaaSqabeaacqaHXoqyaaaaaa@4133@
,
Not summed here.
So that (d
s)
2
=dr.dr=
e
α
.
e
β
d
x
α
d
x
β
=
e
α
.
e
β
d
x
α
d
x
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4uaiaab+gacaqGGaGaaeiDaiaabIgacaqGHbGaaeiDaiaabccacaqGOaGaamizaiaabohacaqGPaWaaWbaaSqabeaacaqGYaaaaOGaeyypa0JaaCizaiaahkhacaGGUaGaaCizaiaahkhacqGH9aqpcaWHLbWaaSbaaSqaaiabeg7aHbqabaGccaGGUaGaaCyzamaaBaaaleaacqaHYoGyaeqaaOGaamizaiaadIhadaahaaWcbeqaaiabeg7aHbaakiaadsgacaWG4bWaaWbaaSqabeaacqaHYoGyaaGccqGH9aqpcaWHLbWaaWbaaSqabeaacqaHXoqyaaGccaGGUaGaaCyzamaaCaaaleqabaGaeqOSdigaaOGaamizaiaadIhadaWgaaWcbaGaeqySdegabeaakiaadsgacaWG4bWaaSbaaSqaaiabek7aIbqabaaaaa@63D3@
,
Note that the implied summation is
used here
or
(ds)
2
=
g
αβ
d
x
α
d
x
β
=
g
αβ
d
x
α
d
x
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiaadsgacaqGZbGaaeykamaaCaaaleqabaGaaeOmaaaakiabg2da9iaadEgadaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaadsgacaWG4bWaaWbaaSqabeaacqaHXoqyaaGccaWGKbGaamiEamaaCaaaleqabaGaeqOSdigaaOGaeyypa0Jaam4zamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaamizaiaadIhadaWgaaWcbaGaeqySdegabeaakiaadsgacaWG4bWaaSbaaSqaaiabek7aIbqabaaaaa@53CF@
Where the definition is now
made for the metric tensor components, i.e.
g
αβ
=
e
α
.
e
β
and
g
αβ
=
e
α
.
e
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaeyypa0JaaCyzamaaBaaaleaacqaHXoqyaeqaaOGaaiOlaiaahwgadaWgaaWcbaGaeqOSdigabeaakiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaam4zamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaeyypa0JaaCyzamaaCaaaleqabaGaeqySdegaaOGaaiOlaiaahwgadaahaaWcbeqaaiabek7aIbaaaaa@5133@
Thus we have our first real
2nd order tensor, the metric tensor. Not to be confused with the
inches tensor, and as a side note, its symmetric to boot.
Conversion
between Covariant and Contravariant Components
Recalling from the above,
somewhere, the definition of reciprocal vectors
e
α
.
e
β
=1 forα=β and
e
α
.
e
β
=0 for α≠β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVv0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaCaaaleqabaGaeqySdegaaOGaaiOlaiaahwgadaWgaaWcbaGaeqOSdigabeaakiabg2da9iaaigdacaqGGaGaaeOzaiaab+gacaqGYbGaeqySdeMaeyypa0JaeqOSdiMaaeiiaiaabggacaqGUbGaaeizaiaabccacaWHLbWaaWbaaSqabeaacqaHXoqyaaGccaGGUaGaaCyzamaaBaaaleaacqaHYoGyaeqaaOGaeyypa0JaaGimaiaabccacaqGMbGaae4BaiaabkhacaqGGaGaeqySdeMaeyiyIKRaeqOSdigaaa@5AB3@
Which, is conveniently
expressed as
e
α
.
e
β
=
g
α
β
=
δ
α
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVv0Je9sqqrpepC0xbbL8F4rqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaCaaaleqabaGaeqySdegaaOGaaiOlaiaahwgadaWgaaWcbaGaeqOSdigabeaakiabg2da9iaadEgadaahaaWcbeqaaiabeg7aHbaakmaaBaaaleaacqaHYoGyaeqaaOGaeyypa0JaeqiTdq2aaWbaaSqabeaacqaHXoqyaaGcdaWgaaWcbaGaeqOSdigabeaaaaa@480C@
,
and noting what is clearly an obvious definition for the new delta symbol
introduced here.
So, given that a vector can
have components expressed in contravariant form, the components in covariant
form can now be obtained:
V=
V
α
e
α
=
V
α
e
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOvaiabg2da9iaabAfadaahaaWcbeqaaiabeg7aHbaakiaahwgadaWgaaWcbaGaeqySdegabeaakiabg2da9iaabAfadaWgaaWcbaGaeqySdegabeaakiaahwgadaahaaWcbeqaaiabeg7aHbaaaaa@43B9@
V
α
e
α
.
e
β
=
V
α
e
α
.
e
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqySdegaaOGaaCyzamaaBaaaleaacqaHXoqyaeqaaOGaaiOlaiaahwgadaahaaWcbeqaaiabek7aIbaakiabg2da9iaabAfadaWgaaWcbaGaeqySdegabeaakiaahwgadaahaaWcbeqaaiabeg7aHbaakiaac6cacaWHLbWaaWbaaSqabeaacqaHYoGyaaaaaa@48C4@
V
β
=
g
αβ
V
α
, and note how the
e
α
.
e
β
swops/picks out the α to β
in the V
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqOSdigaaOGaeyypa0Jaam4zamaaCaaaleqabaGaeqySdeMaeqOSdigaaOGaaeOvamaaBaaaleaacqaHXoqyaeqaaOGaaeilaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeOBaiaab+gacaqG0bGaaeyzaiaabccacaqGObGaae4BaiaabEhacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaahwgadaWgaaWcbaGaeqySdegabeaakiaac6cacaWHLbWaaWbaaSqabeaacqaHYoGyaaGccaqGGaGaae4CaiaabEhacaqGVbGaaeiCaiaabohacaqGVaGaaeiCaiaabMgacaqGJbGaae4AaiaabohacaqGGaGaae4BaiaabwhacaqG0bGaaeiiaiaabshacaqGObGaaeyzaiaabccacqaHXoqycaqGGaGaaeiDaiaab+gacaqGGaGaeqOSdiMaaeiiaiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGwbWaaWbaaSqabeaacqaHXoqyaaaaaa@78F5@
And obviously
V
β
=
g
αβ
V
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaBaaaleaacqaHYoGyaeqaaOGaeyypa0Jaam4zamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaaeOvamaaCaaaleqabaGaeqySdegaaaaa@40B1@
So one can raise and lower
indexes, by multiplying by the appropriate metric tensor.
And just to make sure we
know what the above means, it means a system of equations thus
V
β
=
g
αβ
V
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaBaaaleaacqaHYoGyaeqaaOGaeyypa0Jaam4zamaaBaaaleaacqaHXoqycqaHYoGyaeqaaOGaaeOvamaaCaaaleqabaGaeqySdegaaaaa@40B1@
,
in expanded form, means
V
1
=
g
11
V
1
+
g
21
V
2
+
g
31
V
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaBaaaleaacaqGXaaabeaakiabg2da9iaadEgadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaaeOvamaaCaaaleqabaGaaGymaaaakiabgUcaRiaadEgadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaaeOvamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadEgadaWgaaWcbaGaaG4maiaaigdaaeqaaOGaaeOvamaaCaaaleqabaGaaG4maaaaaaa@47A6@
V
2
=
g
12
V
1
+
g
22
V
2
+
g
32
V
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaBaaaleaacaqGYaaabeaakiabg2da9iaadEgadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaaeOvamaaCaaaleqabaGaaGymaaaakiabgUcaRiaadEgadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaaeOvamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadEgadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaaeOvamaaCaaaleqabaGaaG4maaaaaaa@47AA@
V
3
=
g
13
V
1
+
g
23
V
2
+
g
33
V
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaBaaaleaacaqGZaaabeaakiabg2da9iaadEgadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaaeOvamaaCaaaleqabaGaaGymaaaakiabgUcaRiaadEgadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaaeOvamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadEgadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaaeOvamaaCaaaleqabaGaaG4maaaaaaa@47AE@
Tensor
Sums
Tensor expressions usually
result in sums of products of terms, such as
V
β
=
F
α
A
α
βμ
C
μ
+
J
β
H
α
K
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqOSdigaaOGaeyypa0JaaeOramaaCaaaleqabaGaeqySdegaaOGaaeyqamaaBaaaleaacqaHXoqyaeqaaOWaaWbaaSqabeaacqaHYoGycqaH8oqBaaGccaWGdbWaaSbaaSqaaiabeY7aTbqabaGccqGHRaWkcaqGkbWaaWbaaSqabeaacqaHYoGyaaGccaqGibWaaSbaaSqaaiabeg7aHbqabaGccaWGlbWaaWbaaSqabeaacqaHXoqyaaaaaa@4DE8@
because all the summing indexes take on all
values you can swap between indexes that are repeated in a single product. e.g.
the above can be written also as:
V
β
=
F
μ
A
μ
βα
C
α
+
J
β
H
α
K
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOvamaaCaaaleqabaGaeqOSdigaaOGaeyypa0JaaeOramaaCaaaleqabaGaeqiVd0gaaOGaaeyqamaaBaaaleaacqaH8oqBaeqaaOWaaWbaaSqabeaacqaHYoGycqaHXoqyaaGccaWGdbWaaSbaaSqaaiabeg7aHbqabaGccqGHRaWkcaqGkbWaaWbaaSqabeaacqaHYoGyaaGccaqGibWaaSbaaSqaaiabeg7aHbqabaGccaWGlbWaaWbaaSqabeaacqaHXoqyaaaaaa@4DE8@
α−>μ,μ−>α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaeyOeI0IaeyOpa4JaeqiVd0MaaiilaiabeY7aTjabgkHiTiabg6da+iabeg7aHbaa@4138@
without changing anything.
Write it out to check for yourself.
Notes:
The second term indexes of
the equation above do not need to be changed, although if desired feel free to
do so.
You cannot swap indexes that
are not being summed, unless you swap them everywhere.
A "units" check
must make like match like, i.e. repeated indexes in a product reduces the order
of the tensor by two. Both sides of the equation must match.
Tensor
Transformation Law
The job here is to find out
how to calculate components in one coordinate system when one knows the
components in another coordinate system.
Consider an example 3 variable
position vector
R=
x
1
(
u
1
,
u
2
,
u
3
)
e
1
(
u
1
,
u
2
,
u
3
)+
x
2
(
u
1
,
u
2
,
u
3
)
e
2
(
u
1
,
u
2
,
u
3
)+
x
3
(
u
1
,
u
2
,
u
3
)
e
3
(
u
1
,
u
2
,
u
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOuaiabg2da9iaabIhadaahaaWcbeqaaiaabgdaaaGccaGGOaGaamyDamaaBaaaleaacaaIXaaabeaakiaacYcacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadwhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaaCyzamaaBaaaleaacaWHXaaabeaakiaacIcacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyDamaaBaaaleaacaaIZaaabeaakiaacMcacqGHRaWkcaqG4bWaaWbaaSqabeaacaqGYaaaaOGaaiikaiaadwhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyDamaaBaaaleaacaaIYaaabeaakiaacYcacaWG1bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamyDamaaBaaaleaacaaIXaaabeaakiaacYcacaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadwhadaWgaaWcbaGaaG4maaqabaGccaGGPaGaey4kaSIaaeiEamaaCaaaleqabaGaae4maaaakiaacIcacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadwhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamyDamaaBaaaleaacaaIZaaabeaakiaacMcacaWHLbWaaSbaaSqaaiaaiodaaeqaaOGaaiikaiaadwhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamyDamaaBaaaleaacaaIYaaabeaakiaacYcacaWG1bWaaSbaaSqaaiaaiodaaeqaaOGaaiykaaaa@77DB@
Since the x's are
independent by construction, the covariant basis vectors can be seen to be
given by
e
α
=
∂R
∂
x
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaHXoqyaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWHsbaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqySdegaaaaaaaa@403D@
,
these vectors are tangent to the
coordinate lines.
But in posh talk
e
α
=
∂
∂
x
α
is often used as the definition of the basis vector
e
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabwhacaqG0bGaaeiiaiaabMgacaqGUbGaaeiiaiaabchacaqGVbGaae4CaiaabIgacaqGGaGaaeiDaiaabggacaqGSbGaae4AaiaabccacaWHLbWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhadaahaaWcbeqaaiabeg7aHbaaaaGccaqGGaGaaeyAaiaabohacaqGGaGaae4BaiaabAgacaqG0bGaaeyzaiaab6gacaqGGaGaaeyDaiaabohacaqGLbGaaeizaiaabccacaqGHbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeizaiaabwgacaqGMbGaaeyAaiaab6gacaqGPbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOyaiaabggacaqGZbGaaeyAaiaabohacaqGGaGaaeODaiaabwgacaqGJbGaaeiDaiaab+gacaqGYbGaaeiiaiaahwgadaWgaaWcbaGaeqySdegabeaaaaa@7EE1@
Now consider the same vector
represented in two different coordinate systems by
x
¯
α
=
x
¯
α
(
x
β
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaraWaaWbaaSqabeaacqaHXoqyaaGccqGH9aqpceWG4bGbaebadaahaaWcbeqaaiabeg7aHbaakiaacIcacaWG4bWaaWbaaSqabeaacqaHYoGyaaGccaGGPaaaaa@40FE@
then,
V
¯
α
e
¯
α
=
V
β
e
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeOvayaaraWaaWbaaSqabeaacqaHXoqyaaGcceWHLbGbaebadaWgaaWcbaGaeqySdegabeaakiabg2da9iaabAfadaahaaWcbeqaaiabek7aIbaakiaahwgadaWgaaWcbaGaeqOSdigabeaaaaa@4208@
and where
e
¯
α
=
∂R
∂
x
¯
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCyzayaaraWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpdaWcaaqaaiabgkGi2kaahkfaaeaacqGHciITceWG4bGbaebadaahaaWcbeqaaiabeg7aHbaaaaaaaa@406D@
But we also have
e
β
=
∂R
∂
x
β
=
∂R
∂
x
¯
α
∂
x
¯
α
∂
x
β
=
∂
x
¯
α
∂
x
β
e
¯
α
, by use of the chain rule for partial derivatives
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaHYoGyaeqaaOGaeyypa0ZaaSaaaeaacqGHciITcaWHsbaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqOSdigaaaaakiabg2da9maalaaabaGaeyOaIyRaaCOuaaqaaiabgkGi2kqadIhagaqeamaaCaaaleqabaGaeqySdegaaaaakmaalaaabaGaeyOaIyRabmiEayaaraWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHYoGyaaaaaOGaeyypa0ZaaSaaaeaacqGHciITceWG4bGbaebadaahaaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiabek7aIbaaaaGcceWHLbGbaebadaWgaaWcbaGaeqySdegabeaakiaabYcacaqGGaGaaeOyaiaabMhacaqGGaGaaeyDaiaabohacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaaeiAaiaabggacaqGPbGaaeOBaiaabccacaqGYbGaaeyDaiaabYgacaqGLbGaaeiiaiaabAgacaqGVbGaaeOCaiaabccacaqGWbGaaeyyaiaabkhacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabsgacaqGLbGaaeOCaiaabMgacaqG2bGaaeyyaiaabshacaqGPbGaaeODaiaabwgacaqGZbaaaa@88C1@
V
¯
α
e
¯
α
=
∂
x
¯
α
∂
x
β
V
β
e
¯
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeOvayaaraWaaWbaaSqabeaacqaHXoqyaaGcceWHLbGbaebadaWgaaWcbaGaeqySdegabeaakiabg2da9maalaaabaGaeyOaIyRabmiEayaaraWaaWbaaSqabeaacqaHXoqyaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHYoGyaaaaaOGaaeOvamaaCaaaleqabaGaeqOSdigaaOGabCyzayaaraWaaSbaaSqaaiabeg7aHbqabaaaaa@4ABA@
hence,
V
¯
α
=
∂
x
¯
α
∂
x
β
V
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeOvayaaraWaaWbaaSqabeaacqaHXoqyaaGccqGH9aqpdaWcaaqaaiabgkGi2kqadIhagaqeamaaCaaaleqabaGaeqySdegaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaeqOSdigaaaaakiaabAfadaahaaWcbeqaaiabek7aIbaaaaa@4504@
Is the transformation law from
one coordinate system to another coordinate system.
And with a bit of pissing
around you can find out for yourself, for example
V
¯
αλ
=
∂
x
¯
α
∂
x
β
∂
x
¯
λ
∂
x
β
V
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeOvayaaraWaaWbaaSqabeaacqaHXoqycqaH7oaBaaGccqGH9aqpdaWcaaqaaiabgkGi2kqadIhagaqeamaaCaaaleqabaGaeqySdegaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaeqOSdigaaaaakmaalaaabaGaeyOaIyRabmiEayaaraWaaWbaaSqabeaacqaH7oaBaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHYoGyaaaaaOGaaeOvamaaCaaaleqabaGaeqOSdigaaaaa@4F69@
Is the transformation law
for a 2nd order tensor
And no surprise here,
covariant tensor (vector) transforms as
V
¯
α
=
∂
x
β
∂
x
¯
α
V
β
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeOvayaaraWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpdaWcaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiabek7aIbaaaOqaaiabgkGi2kqadIhagaqeamaaCaaaleqabaGaeqySdegaaaaakiaabAfadaWgaaWcbaGaeqOSdigabeaaaaa@4502@
Hence, it is now clear why
the upstairs and downstairs indexes are where the are.
Rounding off this section,
consider the vectors normal to the
surfaces defined by
x
α
(
u
β
)=
C
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCaaaleqabaGaeqySdegaaOGaaiikaiaadwhadaahaaWcbeqaaiabek7aIbaakiaacMcacqGH9aqpcaWGdbWaaSbaaSqaaiabeg7aHbqabaaaaa@408B@
These are given by,
e
α
=∇
x
α
where, of course, we are going to show that ∇
x
α
does indeed define the covariant basis vectors
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaCaaaleqabaGaeqySdegaaOGaeyypa0Jaey4bIeTaamiEamaaCaaaleqabaGaeqySdegaaOGaaeiiaiaabEhacaqGObGaaeyzaiaabkhacaqGLbGaaeilaiaabccacaqGVbGaaeOzaiaabccacaqGJbGaae4BaiaabwhacaqGYbGaae4CaiaabwgacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabggacaqGYbGaaeyzaiaabccacaqGNbGaae4BaiaabMgacaqGUbGaae4zaiaabccacaqG0bGaae4BaiaabccacaqGZbGaaeiAaiaab+gacaqG3bGaaeiiaiaabshacaqGObGaaeyyaiaabshacaqGGaGaey4bIeTaamiEamaaCaaaleqabaGaeqySdegaaOGaaeizaiaab+gacaqGLbGaae4CaiaabccacaqGPbGaaeOBaiaabsgacaqGLbGaaeyzaiaabsgacaqGGaGaaeizaiaabwgacaqGMbGaaeyAaiaab6gacaqGLbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae4BaiaabAhacaqGHbGaaeOCaiaabMgacaqGHbGaaeOBaiaabshacaqGGaGaaeOyaiaabggacaqGZbGaaeyAaiaabohacaqGGaGaaeODaiaabwgacaqGJbGaaeiDaiaab+gacaqGYbGaae4Caaaa@91F6@
Why are they not queer
vectors then? Well consider
∇Φ=
∂Φ
∂
x
α
e
α
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaeuOPdyKaeyypa0ZaaSaaaeaacqGHciITcqqHMoGraeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHXoqyaaaaaOGaaCyzamaaCaaaleqabaGaeqySdegaaaaa@43DD@
Then
∇Φ.dr=
∂Φ
∂
x
α
e
α
.dr=
∂Φ
∂
x
α
e
α
.d
x
α
e
α
=
∂Φ
∂
x
α
d
x
α
e
α
e
α
=3dΦ by the chain rule for Φ
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaeuOPdyKaaiOlaiaahsgacaWHYbGaeyypa0ZaaSaaaeaacqGHciITcqqHMoGraeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHXoqyaaaaaOGaaCyzamaaCaaaleqabaGaeqySdegaaOGaaiOlaiaahsgacaWHYbGaeyypa0ZaaSaaaeaacqGHciITcqqHMoGraeaacqGHciITcaWG4bWaaWbaaSqabeaacqaHXoqyaaaaaOGaaCyzamaaCaaaleqabaGaeqySdegaaOGaaiOlaiaadsgacaWG4bWaaSbaaSqaaiabeg7aHbqabaGccaWHLbWaaSbaaSqaaiabeg7aHbqabaGccqGH9aqpdaWcaaqaaiabgkGi2kabfA6agbqaaiabgkGi2kaadIhadaahaaWcbeqaaiabeg7aHbaaaaGccaWGKbGaamiEamaaBaaaleaacqaHXoqyaeqaaOGaaCyzamaaCaaaleqabaGaeqySdegaaOGaaCyzamaaBaaaleaacqaHXoqyaeqaaOGaeyypa0JaaG4maiaadsgacqqHMoGrcaqGGaGaaeOyaiaabMhacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabogacaqGObGaaeyyaiaabMgacaqGUbGaaeiiaiaabkhacaqG1bGaaeiBaiaabwgacaqGGaGaaeOzaiaab+gacaqGYbGaaeiiaiabfA6agjaabccaaaa@8695@
but since dΦ=0, then∇Φ is orthogonal i.e. normal to dr
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOyaiaabwhacaqG0bGaaeiiaiaabohacaqGPbGaaeOBaiaabogacaqGLbGaaeiiaiaabsgacqqHMoGrcqGH9aqpcaqGWaGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGUbGaey4bIeTaeuOPdyKaaeiiaiaabMgacaqGZbGaaeiiaiaab+gacaqGYbGaaeiDaiaabIgacaqGVbGaae4zaiaab+gacaqGUbGaaeyyaiaabYgacaqGGaGaaeyAaiaab6cacaqGLbGaaeOlaiaabccacaqGUbGaae4BaiaabkhacaqGTbGaaeyyaiaabYgacaqGGaGaaeiDaiaab+gacaqGGaGaaCizaiaahkhaaaa@6687@
and considering
∇
x
α
.
e
β
=
∂
x
α
∂
x
β
e
α
.
e
β
=
δ
β
α
.
g
α
β
=
δ
β
α
as was required to be proved
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaamiEamaaCaaaleqabaGaeqySdegaaOGaaiOlaiaahwgadaWgaaWcbaGaeqOSdigabeaakiabg2da9maalaaabaGaeyOaIyRaamiEamaaCaaaleqabaGaeqySdegaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaeqOSdigaaaaakiaahwgadaahaaWcbeqaaiabeg7aHbaakiaac6cacaWHLbWaaSbaaSqaaiabek7aIbqabaGccqGH9aqpcqaH0oazdaWgaaWcbaGaeqOSdigabeaakmaaCaaaleqabaGaeqySdegaaOGaaiOlaiaadEgadaahaaWcbeqaaiabeg7aHbaakmaaBaaaleaacqaHYoGyaeqaaOGaeyypa0JaeqiTdq2aaSbaaSqaaiabek7aIbqabaGcdaahaaWcbeqaaiabeg7aHbaakiaabccacaqGHbGaae4CaiaabccacaqG3bGaaeyyaiaabohacaqGGaGaaeOCaiaabwgacaqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGaaeiDaiaab+gacaqGGaGaaeOyaiaabwgacaqGGaGaaeiCaiaabkhacaqGVbGaaeODaiaabwgacaqGKbaaaa@78D5@
Note:
∂
x
α
∂
x
β
=
δ
β
α
as
x
α
and
x
β
are independant
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtaiaab+gacaqG0bGaaeyzaiaabQdadaWcaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiabeg7aHbaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiabek7aIbaaaaGccqGH9aqpcqaH0oazdaWgaaWcbaGaeqOSdigabeaakmaaCaaaleqabaGaeqySdegaaOGaaeyyaiaabohacaqGGaGaamiEamaaCaaaleqabaGaeqySdegaaOGaaeyyaiaab6gacaqGKbGaaeiiaiaadIhadaahaaWcbeqaaiabek7aIbaakiaabggacaqGYbGaaeyzaiaabccacaqGPbGaaeOBaiaabsgacaqGLbGaaeiCaiaabwgacaqGUbGaaeizaiaabggacaqGUbGaaeiDaaaa@6242@
So, its down with a pint of
Guinness to let this all sink in
© Kevin Aylward 2000 - 2022
All rights reserved
The information on the page may be
reproduced
providing that this source is acknowledged.
Website last modified 1st January
2022
http://www.kevinaylward.co.uk/gr/index.html
www.kevinaylward.co.uk