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Problems and promises of the ensemble
interpretation of quantum mechanics*

Abstract. After a brief outline of the ensemble interpretation, its ad-
vantages and promises are described, including both the elimination of
the puzzles that beset the Copenhagen interpretation and newer lines of
research such as the application of ergodic theory to quantum mechan-
ics. Three problems facing the ensemble interpretation are discussed, of
which that of joint probability distributions is seen to require further
research; some possible lines are indicated. Certain philosophical prob-
lems are discussed, including that of the relation between formalism and
interpretation, where it is suggested that the formalism neither implies
nor is indifferent to the interpretation. The hidden-variable question is
then considered; the von Neumann theorem is seen to be a special case of
a very general theorem, and is interpreted to mean that only stochastic
hidden-variable theories are acceptable. The outline of a possible such
theory is given.

I

The puzzles and paradoxes of quantum mechanics are, as is well known, rather

closely associated with the Copenhagen interpretation; this designation will here

be taken generically to cover the wide variety of views which has in common the
conception that the wave function describes a single system. The list of these dif-

ficulties is long and has not yet ceased to grow —witness the recent discovery of a

Zeno-type paradox in quantum mechanics (Misra and Sudarshan 1977). They may

usefully be classified according to the particular aspect of the Copenhagen view (or

views!) to which they relate. Most of them will be found to fall into one of three
groups:

a) Those associated with the basic question concerning the nature of the wave
function, e.g. the problems of the wave-particle duality. This variety has given
rise to a great deal of heated discussions but is usually not susceptible to precise
statement in mathematical language; this fact does not diminish their impor-
tance but does complicate their analysis. P

b) Those derivable in one way or another from the work of Einstein, Podolsky and
Rosen (1935); these include the well-known puzzle of Schrodinger’s cat and its
ramification at the hands of Wigner’s friend. Here the mathematical formulation
was made clear from the very beginning; unhappily it cannot be said that the
large number of papers that over the years have attempted to analyse these
problems have shed any significant light on them.

*Presented at the Symposium on the philosophical aspects of quantum theory, Dubrovnik, 2-6
April 1980.
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¢) Those linked to certain specific points in the Copenhagen interpretation which
may be doubted without affecting the main part of that structure. Of this nature
are the questions raised by the projection postulate.
The third group is not very relevant to the present purpose, for obvious reasons,
and I shall not further discuss them. My main aim here is rather to show, in the
first place, that the ensemble interpretation of quantum mechanics successfully deals
with the difficulties in groups a and b; then to ventilate certain philosophical ques-
tions concerning the relationship between the mathematical framework and the
interpretation of any physical theory; thirdly, in the light of these considerations, to
examine certain problems in the ensemble interpretation and the attempts made to
solve them; and finally, to consider the outlook for the future work. But before these
points are raised I will briefly outline the nature of the ensemble interpretation.

What I call here the ensemble interpretation is essentially what is commonly
known as the statistical interpretation; but I mark the difference for two reasons.
One is that the term “statistical” may be misleading, since it has sometimes been
used to refer to Born’s conception of the wave function as a probability amplitude
(Heisenberg 1930, Messiah 1959). The other reason is that the statistical inter-
pretation is usually left rather unfinished, while I propose to study the problems
involved in rounding it out and so making it the basic interpretation of all quantum
mechanics.

The ensemble interpretation was adumbrated by Slater (1929) and further de-
veloped by quite a number of authors, including Einstein (1949,1953), Margenau
(1958, 1963 a,b) and Blokhintsev (1953). A recent review (Ballantine 1970) provides
a good account of the arguments leading to this interpretation, so that here I need
only touch on the central points (see also Ross-Bonney 1975).

In the ensemble interpretation the wave function is taken to refer not to one
simple system but rather to an ensemble of such systems, in the sense of statistical
mechanics: a (possibly infinite) set of theoretical replicas of the system under study;
this set is described by a measure function p(dx) which yields the relative abundance
within the set of systems that lie in the region dx of the underlying sample space,
usually taken to be the phase space of classical mechanics. In such an ensemble the
theoretical prediction for a function f(x) is the expectation value,

(f) = fn F(x)u(dx) (1)

where ) is the volume of the phase space,! and f may, of course, also depend on
the time t.

One point must be stressed: the ensemble is a theoretical construct, and as always
its use does not necessarily imply that only averages over many measurements of
the same kind can be compared to its predictions (and even less that it can only
deal will systems composed of many particles); I return below to this question.

What the ensemble interpretation maintains is, in other words, that the ensem-

'Eq. (1) assumes that the measure y is normalized. A very clear discussion of ensembles will be
found in Balaescu (1975).
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ble average (1) coincides with the quantum-mechanical expectation value, provided
a suitable ensemble is chosen. But as will be seen below, it is precisely this choice
of an ensemble that the quantum formulation does not determine uniquely: it is
here that we rediscover the incompleteness of quantum mechanics first pointed
out by Einstein, Podolsky and Rosen (1935). As will be seen in section VI, this
incompleteness points beyond quantum mechanics and opens up a fruitful field of
research. Within the quantum framework the nonexistence of well-defined criteria for
choosing an appropriate ensemble creates no problem: the quantum formalism has
precisely the aim of allowing us to calculate expectation values without specifying
explicitly the ensemble used for this.

But this does not mean that all is plain sailing: there are still certain problems
raised by the ensemble interpretation, among which the issue of joint probability
distributions occupies pride of pace; accordingly, it will be reviewed in section IV.
This, however, requires the clearing up of some philosophical matters, and these,
together with some related points, will also by discussed below, together with some
possibilities for resolving the Joint-probability problem.

I

Now what does the ensemble interpretation achieve?

In the first place, conceptual clarity. As has been stressed, for instance by
Penrose (1970), the notion of an ensemble is fundamental not only for statistical
mechanics but is a basic concept for the cognitive process we call scientific research.
A particular aspect of this situation is the role it can play in adequately explicating
the much confused idea of probability (Brody 1980); this explains its relevance
to quantum mechanics, where it has been clear for some time that the two chief
interpretations are closely linked to the two most prevalent views concerning the
nature of probability (Popper 1967; see also Ballentine and Brody et al. 1979).

The conceptual clarity I refer to is particularly evident in the elucidation the
ensemble interpretation offers of Heisenberg’s so-called uncertainty principle: if &
is the (Hermitian) operator corresponding to an observable a (i.e. a quantity for
which a measuring process is known) such that the values observed for a state
yield a mean that, within experimental error limits, corresponds to (¥]al), then

(Aa)? = (l(a — (p[alw))|p) (2)

is the theoretically predicted statistical dispersion of the measured values of a.
Similarly for the operator . And if @ and b do not commute,

[a,b] = ini (3)
for instance, then

3h. (4)
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Here Aa, Ab can only be interpreted as standard deviations in the usual statistical
sense, and the fact that for (4) to hold they must both be defined with the same
1 only means that we must have a state-preparation procedure which can generate
an indefinitely long sequence of systems belonging to the ensemble described by ;
on some of these systems we measure a, on others we measure b. It is not necessary
that @ and b should be measured on the same systems. Thus Aa and Ab bear no
relation to the experimental errors éa and éb; fortunately so, for otherwise it might
prove difficult to provide experimental proof for the validity of (4), as is very clearly
explained by Ballentine (1970).

Similar conceptual simplifications arise in the consideration of the measurement
problem. This has become a problem only because, in a view that associates the
wave function with an individual system, the prediction that different measured
values occur with nonzero probabilities is incompatible with the fact that only one
of these values is obtained in each measurement while the others do not occur at all.
What privileges these values? We do not know; hence the need for von Neumann's
projection postulate and all its undesirable consequences. The difficulties are often
further compounded by the quite unwarranted assumption that the measurement
process does not alter the value of the measured quantity (of course, if 1 is an eigen-
state of A with eigenvalue a, then At is an eigenstate with the same eigenvalue; but
no principle underlying quantum mechanics allows us to identify the mathematical
effect of A with the physical interaction between the systems described by @ and
external systems) and by the neglect of the distinction between state preparation
and state measurement. Any physical experiment begins by suitably preparing the
system under study; the system is then submitted to whatever interaction is the
object of the experiment, and finally suitable measurements are carried out. There-
fore a state preparation is a process that leaves the system in a known state; while
state measurement determines, at least partially, what state the system is in as
it enters the measurement. The system’s state before state preparation and after
measurement are of no interest, and in the second case may be meaningless when the
measurement is destructive. There is thus a symmetry under time reflection between
preparation and measurement; but the symmetry is not complete, for not every
measurement procedure can be turned into a preparation method. The distinction
between state preparation and measurement, established clearly by Margenau (1958,
1963 a,b), is vital. Among other points, it permits defining the proper significance
contained in the projection postulate, namely that after state preparation by means
of a procedure describable through an operator A, the system will be in an eigenstate
|} belonging to the eigenvalue o; of A, if the subensemble i is selected. The last
phrase is essential, for without a selection a mixed state containing all eigenstates
of A is obtained; in a Stern-Gerlach apparatus, for instance, we obtain a beam of
particles with all spin projections directed upwards only if we select that part of the
split beam which goes through the upper slit. On the other hand, il we replace theslit
by a counter, the particles are absorbed: we have turned a preparation procedure
into one of measurement, but the projection postulate is now meaningless. It is
the confusion between preparation and measurement which generates the many
aharrditios anharently derived from the proiection postulate.
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Once these unnecessary confusions are eliminated the discussion of measure-
ments in the ensemble interpretation is very simple (once more follow Ballentine
1970): the expectation value is found from the basic rule

(A) = (v|Alw) (5)

and corresponds, to within experimental error, to the mean of a sufficiently large set
of experimental determinations of A on similarly prepared systems (i.e. all belonging
to the ensemble described by ). Suppose |S;a;) to be the eigenstate of A for the
system S to be measured, and |M; 4} to be those states of the measuring apparatus
M which are macroscopically distinguishable, |M; u1g) being the initial state of M.
Then the initial state of the system S+ M will be |S; a;)|M; po); if we now write V
for the evolution operator of the interaction between S and M, the final state will

be
VIS, ai)|M; po) = |5 6i)| M; i) (6)

say. The state ¢; of S may but need not coincide with a; and in general is a
functional of it (Araki & Yanese 1960). If instead of an eigenstate of the quantity
to be measured we have a state

1S;9) = ) (exl$)]S; ax)

k

then

VIS;¥) M; o) = D (aklh)|S; an) | M; pua), (7)
- |

and the probability of the macroscopic observation p; is p; = |{a|1)[?, meaning that
if we repeat the state preparation yielding v and the measurement of A a sufficient
number of times, the relative frequency of our finding i, is just p;. If, then, the states
|M; i > are distinguishable at the macroscopic level, the system S must have had
the value a; for A with just that probability p;. It is this which makes M into an
appropriate measuring system. No peculiar phenomena such as the “collapse of the
wave function” is involved. Schrodinger’s cat presents no problem: there is now a
multiplicity of them, half of them being dead and the other half alive; which one of
them we look at is not, however, implicit in the wave function.

The only remaining question concerns the simultaneous measurement of more
than one quantity. The problem appears, as expected, when the operators for these
quantities do not commute. It is suprising that the textbooks make at best confusing
reference to this problem, for simultaneous measurement is one of the most widely
employed experimental techniques; indeed, in bubble chambers the momentum of
a particle is derived from a set of position measurements which yield the curvature
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in the magnetic field.? Surprisingly little work has been done on this question since
the pioneering work of Park and Margenau (1968). They showed that the non-
commutativity of operators does not imply the incompatibility of the corresponding
measurements; they offer a not implausible conjecture that there exists a type of
joint measurement (which they term historical because its results depend on earlier
states of the system), that is the only one always feasible, and they furnish examples
of this type (the curvature measurement on bubble-chamber tracks belongs to it, as
do time-of-flight experiments). This conjecture has not to my knowledge been fully
validated yet.

It is worth adding, since there exists much confusion about the matter, that there
is no connection between non-commutativity and correlation. Thus position and
momentum of individual particles are in some ezperimental situations so strongly
correlated that we can deduce one from the other; while two perpendicular spin
components are quite uncorrelated.

A quite different direction in which the ensemble interpretation has shown no-
table promise is in the study of the ergodic properties of quantum states. The
ensemble represented by the wave function v has, in general, a time dependence,
though for a stationary state of energy E this takes the relatively trivial form
exp(—iEt/h); it makes sense, therefore, to ask under what circumstances ensemble
averages may replace the temporal average for a single system —which is the most
fundamental of the properties that ergodic theory (see e.g. Arnold and Avez 1968)
has shown to be relevant. It is suprising that such questions should never have
been asked until quite recently; the first ones to do so were Claverie & Diner (1973,
1975), who defined the correlation function of an operator A(t) (in the Heinsenberg
picture) as

Ba(t, ') = (WIAAA(Y) + At A(1)] 1) (8)

and then showed that, firstly, for a stationary quantum state it depends only on
the difference 7 = t — t' and so is stationary in the stochastic-process sense also;
and secondly that if the quantum state is non-degenerate, then the variance of the
quantity a(t) corresponding to A(t) in such a way that its ensemble mean is the
quantum-mechanical expectation value (] Al¥) tends to zero as t=2: thus we have
a strong ergodic property. Numerically, it is found that ergodicity is reached in a
surprisingly short time; for the average for any operator is within one millionth of
its ensemble average when t exceeds 1071% sec. On the other hand, an unconfined

system is never ergodic.
These results are highly relevant to the interpretation of quantum mechanics.
Among other points, they go a long way to clearing up the source of many confusions;

30On more than one occasion, a bright student has interrupted my discussion of bubble-chamber
techniques and stated that this was impossible, because the laws of quantum mechanics forbid
the simultaneous determination of non-commuting quantities. This is explicitly stated to be the
case even by reputable authors, e.g. Roman (1965), section 1-2: “the necessary and sufficient
condition of the simultaneous measurability of two or more observables on any system is that the
corresponding operators commute”.
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for instance, it is evident that measurements on individual hydrogen atoms (and
similar confined non-degenerate systems) are well represented by ensemble averages
for they usually take a much longer time than that needed to achieve ergodicity.
This is the reason why the single-system interpretation of the Copenhagen type
could develop and:achieve a persuasive series of successes; it is also the reason why
they create so many paradoxes for situations like the famous double-slit experiment,
where ergodicity fails and therefore the predictions of the quantum-mechanical en-
semble correspond only to averages over many measurements: the passage of a single
electron, whichever slit it goes through, never creates a diffraction pattern.

Much further work remains to be done on these and related questions; but
it is already evident that such investigations will shed light on some very obscure
corners of quantum mechanics, as for instance the unsatisfactory description we have
of processes like the separation of H;" into H* 4 H; this problem is well known to
quantum chemists (see e.g. Claverie and Diner 1976), but ignored by physicists.

II1

The ensemble interpretation thus offers the advantages of conceptual simplicity and
clarity, of freedom from paradox (so far as we know), of a quite natural fit to the
experimental situation, and of great possibilities for further research. Why then has
it not simply displaced the Copenhagen interpretation? There exists a philosophical
bias which I return to below; but there are also difficulties more directly linked to the
physics of quantum phenomena, and these may be examined under three headings.

The first one concerns the existence of discrete states. If we accept the ensemble
interpretation, quantum mechanics has a basic structure rather like that of statis-
tical mechanics, and one might therefore expect that distribution functions which
are Dirac §’s (or sums of them) would appear only as limiting cases; in quantum
mechanics, however, such distribution functions appear to be fundamental. The
difficulty vanishes once it is noticed that even in quantum situations discrete states
(in the mathematical sense) can only be an extrapolation: for such states appear
only in systems that are essentially confined to a finite volume (described by a
square-integrable wave function) and have no interaction whatsoever with anything
outside it, and this is in fact an idealization which real systems at best approximate.
From a slightly different point of view, an energy eigenstate, for instance, must have
a certain finite width, otherwise its lifetime is infinite, it can never decay and there-
fore cannot be observed; we should not know about its existence and if the theory
predicted it should judge the theory wrong. Here, then, the ensemble interpretation
suggests that the basic elements of the quantum formalism be extended so as to
consider primarily open systems in interaction with their surroundings, and closed
systems only as limiting cases. This point will be touched on again below.

The second difficulty to be looked at here arises from the conclusion many
physicists have arrived at that joint distribution functions for non-commutating
observables cannot exist in the quantum formalism. The argument may be set out
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in the following points, which we number for their discussion below; they are largely
adapted from Cohen (1966a).

(i) The ensemble of quantum mechanics are characterized by probability dis-
tributions over a classical phase space, augmented where necessary by variables
that account for spin etc. (In what follows we have no need of this generality and
therefore restrict ourselves to a phase space (p, ¢) with one degree of freedom, where
q is the position and p the momentum of a particle.)

(i1) The probability distribution® f(p,q) must satisfy the following conditions:

f(p,q) = 0 almost every where (9)

[ [ 10yipda =1 (10)

j f(pldp = [Bla)? (11)

and

/ £(p,q)dg = |6(p)]2 (12)

where ¥(q) = 1(g,t) is the coordinate wave function for the state under consid-
eration and ¢(p) = (2rh)~1/? [ ¥(q) exp(ipg/h)dq is the corresponding momentum
wave function. Conditions (9) and (10) are needed so that f(p, q) is a proper density
function for a probability distribution, while condition (11) stipulates that it should
have the correct marginal distributions for the probabilities of finding values for
the position or the momentum. Condition (10) is redundant, being implied by the
normalization of 4 or ¢, but is noted for completeness’ sake. All integrals go from
—oo to oo. .

(iii) For each quantum-mechanical operator A there should exist a function
a(p, q) such that the expectation value

(A) = ($lAlp) = j ] a(p,9)f (5, q)dpda (13)

(iv) Furthermore, if another operator B is a function F(/i), then the corre-
sponding function b(p, q) which enters into (13) should satisfy

b= f(a). (14)

It can now be shown that

*For the sake of simplicity, I have written probability densities f(p, ¢) to discuss distributions here,
though the differentiability of the distribution F(p’,¢') = Pr(p < p',q < ¢') is not a requirement
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(v) There exists no unique rule for deriving a distribution f(p, ¢) for a given wave
function % that will satisfy all the conditions of points (ii) and (iii); and moreover,

(vi) There exists no function f(p,q) that satisfies point (iv) for any F' as well
as (ii) and (iii).

Conclusion (v) was first brought out in a paper by Shewell (1973); both are
proved (though differently stated) in Cohen (1966b, 1966c¢).

These conclusions are all the more surprising in that joint distribution functions
have found wide use in various applications, and are particularly useful in quantum
optics (Agarwal and Wolf 1970). Indeed, their history goes back to 1932, when
Wigner (1932) introduced a distribution

Flpaa) = 5oy [ 90— WUl + o) do (15)

as a phase-space representation of /. This is still the best known of the distribution
functions, and it has formed the basis of a serious attempt to restate quantum
mechanics as a phase-space theory (Moyal 1949). Yet the Wigner function of Eq. (15)
is not a probability function for all of quantum mechanics; it fails in three aspects:
it satisfies condition (iia) above at best for the ground state, but is non-positive
already for the first excited state of the harmonic oscillator; for functions a(p, q)
which cannot be written as a'(p) 4+ a’'(g) it can give the wrong expectation value;
and -a special but important case- it predicts finite widths for the excited states of
systems. Concerning the first point, it has been shown (Urbanik 1967, Hudson 1973,
Piquet 1974) that the Wigner function is non-negative for the coherent states first
introduced by Glauber (1963); but however useful these have in practice proved to
be, it is not possible to reduce quantum mechanics to them, and therefore several
authors, among others Mehta (1964) and Margenau and Hill (1961), have proposed
alternatives to Eq. (15). That none of these can be satisfactory is the result of
Cohen’s work, who was able to introduce a general form of which earlier proposals
are particular cases:

Suppose, in classifical statistics, we are given a probability density f(x) for a set
of variables x = (x1,...,z,) and wish to determine the density for a set of variables
¥ = (y1,-..,yn) which are functions y(x) of the x. A convenient way to carry out

the transformation is to find the characteristic function for the y, i.e. the Fourier
transform of f in the y space

= [ rx)explio-y(x))ax (16)
and then to recover the looked-for density f(y) as the inverse Fourier transform
i1 .
1'0)= o5 [ @ exp(-i0-y)ib. a7

In quantum mechanics x = (p,q) and the y we are interested in are the operators p
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and ¢. This prescription therefore implies that (writing 8, 7 for the two components

of 8)
X(0,7) = [ (@) exp 0+ 7)bl0)da
= [ v @explRitrt) exp(t) expliriys(a)da
- fyf)'(q — Lrh)e®ay(q + Lrh)dg. (18)

The Fourier inverse of this is the Wigner function (15); but the notion that we must
replace p, ¢ by p, ¢ in the exponential is, as Cohen (1966b,c) shows, insufficient, and
a more general correspondence

expi(fg+ 7p) «— g(0,7)expi(8g + Tp) (19)
satisfies the requirements (ii) and (iii) provided
9(6,0) = g(0,7) =1, (20)
and
9'(0,7) = g(=0 - ). (21)

Eq. (20) is needed to ensure the quantum-mechanically prescribed marginal distribu-

tions (11) and (12), while Eq. (21) ensures that all operators fl(p, q) are Hermitean
and so have real eigenvalues. Wigner’s function now corresponds to the case g = 1.

It is not difficult now to show that there exists no one function g(,7) such
that the conditions (ii) and (iii) are satisfied for all ) —which proves conclusion
(v)— and that there cannot exist any g(0,7) for which condition (iv) is satisfied
—which proves conclusion (vi). These two conclusions not only create foundational
difficulties for the extensive applications of distribution functions (and the Wigner
function in particular); they are-also awkward for the ensemble interpretation. Since
their mathematical background is irreproachable, we must critically examine the
points (i) to (iv) on which they are based. But this requires the elucidation of
certain philosophical points, a matter to which we now turn.

This will at the same time create a basis for discussing the third difficulty of the
ensemble interpretation, namely that in it Einstein’s theorem (Einstein, Podolsky
and Rosen 1935; Einstein 1949) must be taken seriously and the consequence must
be faced that the quantum-mechanical description of nature is incomplete.
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v

The origins of quantum mechanics are closely linked with strongly antimaterialist
philosophical positions. This is not the place for exploring them, a task which has
already been well carried out by others (e.g. Jammer 1966, 1974); what is relevant
here is that this created an evident bias against the ensemble interpretation because
of its open association with the view that the physical world has a reality which is
independent of and both logically and chronologically anterior to our ideas about
it. Such conceptions have been repeatedly expressed; the first to state them explic-
itly was, perhaps, Jordan (1936). As a consequence the precise arguments of, for
instance, Einstein (1949, 1954) have been either ignored or misunderstood, and the
ensemble interpretation has remained underdeveloped, its problems stressed rather
that studied, while the peculiarities and paradoxes of the Copenhagen interpretation
have been taken, with a naive pride, as signs of its revolutionary character. It is time,
I feel, for us to abandon such attitudes and to behave as physicists rather than as
blind defenders of our respective Weltanschauungen. If, therefore, I proceed from
a materialist point of view (in the sense indicated above), this is to be taken as a
postulate whose justification is to be found in its successes, no more —and no less.

This position has significant consequences for the concept of probability used in
the ensemble interpretation. It can evidently not correspond to any of the so-called
subjective views, whether Keynes or de Finetti, for these can be consistent only
with a rejection of objective reality as the starting point for the philosophy (of
science as of anything else). Unfortunately the frequentest viewpoint also creates
difficulties, due largely to its positivist origins which lead it to ignore the subtle
but fundamental distinction between theory and experiment; nevertheless this view
(often called objective) should have led the first generations of quantum physicists
to something like the ensemble interpretation.

Yet this did not happen. Those founders of quantum mechanics that thought
along Copenhagen lines tended towards one or another subjective view of proba-
bility; Heisenberg’s interpretation of it as some sort of Aristotelian potentia is well
known (Heisenberg 1955). Those that followed the ensemble interpretation on the
whole accepted von Mises’ formulations (von Mises 1931), and then ran into trouble.
For some quantum mechanics became a kind of theory for many particles when they
interpreted the frequentest conception of probability too strictly as an experimental
prescription; it is to avoid such misunderstandings that I have preferred here to
speak of the ensemble inpretation instead of the statistical one, as it is traditionally
known. For most the smoothing-over of the theory-experiment distinction in the
positivist tradition underlying von Mises’ work made the agreement of theoretical
prediction and experimental result almost automatic, and therefore “automatically”
eliminated the whole region of problems that would have led to an ergodic theory
of quantum mechanics;* we saw above that the first fruits of such a theory already
provided useful insights.

“This is particularly striking in the work of J. v. Neumann, who made significant contributions to
the development both of quantum mechanics and of ergodic theory, who carefully formulated the
postulates of quantum mechanics in terms of statistical ensembles, and who yet did not realize
how neatly one part of his work would apply to the other (v. Neumann 1932).
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It was necessary, therefore, to develop a conception of probability that could
fit better into an interpretation of quantum mechanics based on the idea of an
ensemble. In fact, the ensemble concept turned out to provide precisely the required
structure. This idea is discussed elsewhere (Brody 1975, 1979). Here we need only
say that a full justification can be found for the use of ensembles on the basis that a
physical theory must cover a certain range of similar situations and must therefore
be an approximation for each particular situation; that averaging over the ensemble
provides a way for selecting the common features among all the situations covered by
the ensemble; and the probability is then introduced as the ensemble average of one
particular kind of property. It will be clear that since the ensemble is a theoretical
construct, the agreement of its theoretical predictions with experimental results is
not automatic; it must be striven for, by adjusting and improving the ensemble until
the fit is adequate. Lastly, if the ensemble is to describe physical situations, it will
have a time evolution; thus ergodic concepts can appear naturally in this picture,
and they turn out to be very relevant to understanding the role of probability in
our descriptions of nature.

On such a basis the ensemble imterpretation of quantum mechanics is quite
natural, and the conceptual difficulties and misunderstandings I have mentioned
above do not develop. But because things did not in fact happen in this way, certain
further points require discussion before going on to consider possible solutions to
the difficulties of the ensemble interpretation.

The first one concerns the relationship between a theory’s structure and its
interpretation, where two opposing viewpoints can be found. One is that these two
elements of a physical theory have a unique connection, so that the formalism implies
the interpretation; this widely held view is clearly stated by Rosenfeld (1957). Such
a view raises several problems; even if it were true, it would not be helpful until we
actually knew how to deduce the interpretation from the formalism; and since, above
all for quantum mechanics, no one has been able to carry out such a programme
of deducing the interpretation, we cannot do better than to continue comparing
the relative merits of different interpretations. But the view is not even true; this is
obvious when we consider that the interpretation of a formalism, i.e. the connection
we propose to establish between the various concepts of the formalism and elements
of physical reality,® involves notions that do not at all appear in the formalism.
Moreover, historically the first vague ideas of what later becomes the interpretation
procedes the construction of the formalism, and it is precisely because the connection
between the two is not unique that the business of scientific research requires that
element of creativeness all the great scientists have insisted upon. Also, it must not
be forgotten that scientific theories are not static; they change and evolve; sometimes
it is the interpretation that changes, as when the ideal gas laws are reinterpreted in
the light of the microscopic models of statistical mechanics; sometimes the formalism
is renewed, as when classical mechanics is rewritten by Hamilton and Jacobi. In

*The language here is deliberately borrowed from Einstein (Einstein, Podolsky and Rosen 1935);
for the problem is a real one only in his materialistic philosophy. In the phenomenalism of Mach
or the conventionalism of Poincaré it reduces to a methodological question of little fundamental
interest, and for a subjective idealist it vanishes completely.
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quantum mechanics, in particular, the formalism has not remained at all static,
and we have a Hilbert-space version, a C*-algebra one, and lattice-theory one —not
forgetting the two original formulations of Schrédinger and Heisenberg-Born-Jordan.
Do we then have to find a slightly different interpretation for each of these versions?

But if the Rosenfeld view of a unique connection between formalism and inter-
pretation is not tenable, neither is the view apparently held by many critics of the
Copenhagen interpretation (I say ‘apparently’, for its absurdity would be patent if it
were fully spelt out, and so it can at best be glimpsed as implicit in their writings)
that these two components are largely independent, so that one can remove the
interpretation from a theory and simply plug in another one. This view might be
termed a ‘Meccano’ one; household appliances and motorcars can be built on such
a principle, but scientific theories lie beyond its pale. We need not labour the point.

Clearly the actual situation lies in between these extremes. Formalism and inter-
pretation do not imply each other, and are not mutually deducible; but neither are
they independent, to be changed at the whim of the scientist. They have a strong
influence on each other. This fact has an obvious implication here: if the ensemble
interpretation of quantum mechanics is to be made fully workable, we may expect
that some change in the formalism will be required. Just what changes are in fact,
needed is still an open question, requiring much further work; in the next sections
some relevant ideas are discussed. It might be said, of course, that with such changes
in the formalism we no longer have quantum mechanics, we have a new theory. This
is to some extent a terminological question to be settled by convention, though only
a radical change in basic notions, methods and results could really justify speaking
of an entirely new theory; the changes that can at present be foreseen, however, are
hardly more important than for instance the introduction of superselection rules.
But a more significant answer is that the general acceptance of what we have called
the ensemble interpretation would surely mean the equally general relinquishment
of the Copenhagen interpretation: this is not what would be expected if it were to
constitute a new theory, since new theories (pace Kuhn & Co.) do not replace earlier
ones except in special, limiting situations.

It is perhaps more important to observe that if we abandon Rosenfeid’s view
then we must look for a criterion of choice between the alternatives for an interpreta-
tion. One should expect, on general grounds, to derive experimental tests; after all a
difference in interpretation signifies a difference in the links between formalism and
observable fact. Unhappily, in the present case nothing of the kind seems possible.
Two factors combine to bring this about: on the one hand, in all interpretations of
the probability concept —and we have seen how central this is to the formulation
of the two main interpretations of quantum mechanics— the experimental estimate
of a probability is derived from a relative frequency; and on the other, it is quite
usual to find experimental physicists who in writing adhere to the Copenhagen
interpretation but whose experimental practice corresponds to the ensemble one.
There is thus no way experimentally to decide between the two interpretations.5

‘It was hoped at one time that Bell’s inequality (Bell 1965; see also Clauser and Shimony 1978)
might indirectly provide relevant evidence, in that its experimental confirmation would eliminate
all but macroscopically non-local hidden-variable theories. As we shall see below, the concept of
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Since conceptual simplicity is at best a confused and subjective criterion (Bunge
1963), there remains only one possibility: fruitfulness in suggesting further lines
of research. In the last section we shall show that on this criterion the ensemble
interpretation wins hands down.

Another point concerns the “return to outmoded classical models” which has
been a common reproach directed at critics of the Copenhagen interpretation. Now
it is true that the ensemble interpretation makes no such demands of ontological
renewal as the Copenhagen viewpoint does —no doubts about the underlying reality,
no holistic implication uniting object and measuring device, no renunciations of
causality (which, moreover, is generally confused with determinism). But it is not
at all true that it reduces quantum theory to a special if elaborate case of classical
mechanics, for two good reasons: as the comparison with statistical mechanics makes
clear, in a statistical (or better, ensemble) theory, new concepts and qualities appear
(e.g. temperature or entropy), others disappear (the positions and momenta of the
microscopic components) and even new basic principles (irreversibility and ergodic-
ity) can arise which not only have no counterpart in the underlying mechanics but
can even contradict it; in the present case, moreover, the ensemble interpretation is
not a complete statistical theory, for it lacks the required mechanical theory that it
would be based upon.

Precisely this is the last point to need making here: in the ensemble interpreta-
tion Einstein’s theorem on the incompleteness of quantum mechanics acquires the
specific meaning just mentioned; quantum mechanics, then, requires an underlying
physical model of which it will be the statistical theory. In a sense we shall have here
a hidden-variable theory and we must therefore explore the question to what extent
such theories are conceivable, and how far it has been possible to construct them.
Here we anticipate the discussions below to underline that the ensemble interpre-
tation provides both the motivation for research in this direction which has proved
to be very promising, and the link between the resulting theoretical constructions
and quantum mechanics. The Copenhagen interpretation, on the other hand, leads
to the conclusion that this line of work is impossible; it has even been used to turn
quantum mechanics into the definitive fundamental theory of physics, no longer
susceptible of further modification (Born Heisenberg 1928); we need not refer to the
many historical precedents of similar predictions that further research has falsified.

Vv

On the basis of these general considerations it is possible now to examine the prob-
lem of the joint probability distributions.

The first observation to be made here concerns point (i) in section ITI. An
ensemble theory needs appropriate probability distributions over a suitable sample
space; but that this sample space should be the phase space of classical mechanics
—augmented or not— is a matter that all writers on the subject have simply taken

hidden variables is, though not implied, at least suggested by the ensemble interpretation. But
recent work (Brody and de la Peia, 1980; Brody 1980) has dashed this hope.
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for granted. It is at first sight plausible, particularly in view of an early paper
by von Neumann (1931); but it springs from the notion that quantum mechanics
should in some sense be derivable from classical mechanics. If this is not so, if
classical mechanics appears as a limiting case of quantum mechanics but not also
as its basis, then there is no special reason to accept the classical phase space as
the sample space relevant to the ensemble interpretation. No work appears to have
been done on this question, so that no more can be said here beyond pointing out
an open problem.

With this reservation we may accept classical phase space as the basis for the
ensemble interpretation, and go on to consider point (iv). The meaning of the stip-
ulation that Eq. (14) should hold becomes clear if we take the simplest case, b = a?
corresponding to B = A2, The square of an operator will correspond experimentally
either to the repetition of a measurement on the same system, or alternatively to a
different device that measures the observable A2, In the second case there seems no
conceivable reason to suppose that Eq. (14) should always hold; only the first implies
this, under the condition that we accept the projection postulate (without which the
two measurements might yield different eigenvalues of fi) But we have already noted
that the projection postulate is untenable in the ensemble interpretation; it might
be added that it does not correspond to the majority of experimental situations.
Thus (iv) is not in general valid in quantum mechanics, and conclusion (vi) need
no longer be taken as standing in the way of a consistent ensemble interpretation.

Conclusion (v) presents us with a different situation. It is not in itself a very
plausible requirement that there should be a unique rule for deriving the quantum
mechanical distribution function, in the sense that Eq. (19) admits only one function
9(8,7); on the one hand, such a requirement has no analogue in classical statistical
theories and would therefore need a specific justification which it has never received;
and on the other hand, as is well known (see e.g. Cohen 1966a-c), each g(8,7)
generates a particular correspondence rule between classical quantities and quantum
operators, while no single such rule can have general validity (Shewell 1959). This
last point is obvious enough, for the existence of such a privileged correspondence
rule would tie quantum mechanics to the apron strings of classical mechanics in a
very unacceptable way.

Unfortunately, this does not dispose of the matter. As is already clear from the
example of the harmonic oscillator, a joint distribution function would have to be
state dependent, as well as problem dependent.

That it should depend on the particular problem what g(6,7) is appropriate
seems eminently reasonable; that g should also be a functional of the quantum state
is clearly less so. We must conclude that the conditions given in section III must be
reformulated, but it is not yet completely clear in what terms; though condition (iv)
can be eliminated, something must be added that will allow an appropriate freedom
of choice for g(67) while at the same time a physically plausible picture is created.

Research on these questions has been going on now for some time, with useful
and interesting results, but no definitive solution as yet. Curiously enough, though
various groups have proceeded on the basis of quite dissimilar notions, their con-
clusions converge. Apart from those authors (e.g. Shankara 1967, Leaf 1978) who
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attempt to remain within the framework of traditional quantum theory, two lines
of thought appear.

One is due to Prugovecki (1976, 1979; Ali and Prugoveécki 1977; Boisseau and
Barrabes 1978) and is based on the concept of a “fuzzy” sample space, made up
of “fuzzy” sample points defined as a point in phase space together with a certain
“confidence function” giving the certitude of how near an experimental observation
actually is to the point. The unsharpness of such points raises a number of problems,
among others certain conceptual difficulties with the confidence function. For the
present purpose, however, the main awkwardness of the “fuzzy” approach is that
fuzziness is taken as a primitive concept, not further explained; thus the approach
sidesteps the problems rather than elucidating them, and though on this basis it
is possible to define probability functions that are positive semidefinite and fit into
the quantum-theoretical picture, they are not ordinary probability distributions in
the sense of Kolmogorov, say, and their use would require more fundamental study
than they have yet received. We shall not further discuss this approach here.

A second approach is represented by the very different formulations of Bopp
(1956), Ruggeri (1971) and Kuryshkin (1972a,b, 1973). Bopp’s paper broke new
ground and in fact anticipated the later work of Shewell (1959) and Cohen (1966)
in many ways. His proposal was —-in the terminology used here- to introduce a
particular function g(#,7;¢) that depends on a parameter which possesses many
of the characteristics of a fundamental length. Now ¢(0,7;¢) = 1 only in the limit
¢ — oo; hence we do not here satisfy condition (iic) except approximately; condition
(iv) is likewise not satisfied. Bopp’s work has been rather unjustly neglected and
incorrectly described as wrong (Kuryshkin 1973); it is so only in the sense of breaking
with the Copehnagen interpretation. The choice that Bopp made for g was a little
too specialized, and the papers by Ruggeri and Kuryshkin attempt to remedy this;
their methods are at first sight quite unrelated but work in course by my collaborator
J.L. Jiménez establishes the fundamental identity of these three approaches and
their connection with related work.

Further possibilities exist that have not yet been worked out. One promising
idea is to take explicitly into account the comment made above that eigenstates of
zero width are idealizations. This can be done by eliminating pure states from “real”
quantum mechanics and only admitting density matrices such that trp® < trp = 1.
Whether this gives rise to a feasible theory is at present under study.

There is, however, one problem with such approaches. We noted that Pru-
govecki's fuzziness concept is not really satisfactory, essentially because it makes
it impossible to reach the underlying physics; the Bopp-Ruggeri-Kuryshkin method
does not do this, but as yet it la’cks any background model that would make its var-
ious assumptions sufficiently plausible and remove their rather indefinite generality.
After all, the ensemble interpretation is not looking for a new formalism; it looks
for better physics and it necessarily adapts the formalism.

Both these approaches involve functions g(@,7) that do not satisfy Eq. (20);
thus the marginal distributions of ¢ and p will not quite equal |1(q)|? and |¢(p)|*
respectively; this discrepancy with the prediction of usual quantum theory requires
discussion. Quantitatively, the difference can be explained as the effect of experi-
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mental uncertainty, as has been shown by Cartwight (1976) and Yoshihuku (1979);
if one considers that the experimental errors in the measurement of ¢ and p obey
Gaussian distributions x,4(¢) and x,(n) with dispersion ag and cr: respectively, then
the experimental joint distribution will be given by the joint distribution of ¢ + ¢
and p+17, that is to say the convolution of f(q,p) with x, and x,; and the resulting
distribution function is non-negative provided

K, (22)

=

2.2
ofoy >

It is evident, then, that a non-negative distribution function f(q,p) can come
as near as one whishes to reproducing one or the other of the quantum-mechanical
marginal distributions, which are thus seen as the limiting cases of infinite experi-
mental precision; and even when both dispersions have to be taken into account, the
uncertainty-like inequality (22) imposes no restriction that we can as yet achieve
experimentally. For the fact is that the experimental validity of |1(¢)|? and |#(p)|?
for the experimental distributions has not received anything like as solid an experi-
mental confirmation as one could wish. The best data available have been obtained
from experiments with particle beams, where #(p) is well defined but, because the
system is not confined, 1(¢) is not normalizable and the relation between the two is
not simply that of Fourier transformation as required for the theory that interprets
them as marginal-distribution amplitudes;” on the other hand, for confined systems
measurements of sufficient precision seem to be very difficult. Since so far the exact
form the marginal distributions given by a positive joint distribution function have
not yet been worked out, the matter must be considered one more open problem;
but it might be added that the theory of stochastic electrodynamics, to be discussed
should differ slightly from the quantum prediction.

In summary we have more problems calling for future work than answers in this
matter of the joint distribution of ¢ and p; yet it may fairly be concluded that our
failure so far to find fully satisfactory joint distributions cannot be ascribed to a
fundamental weakness of the ensemble interpretation.

VI

We have so far discussed two of the three difficulties mentioned above that arise
in the attempt to make the ensemble interpretation complete and consistent; but
the third is in a way the most interesting. The EPR theorem (Einstein, Podolsky
and Rosen 1935; Einstein 1949) leads to the conclusion that quantum mechanics
is incomplete. For the ensemble interpretation this conclusion is inescapable and
therefore raises the problem of how to complete the theory. The incompleteness of
quantum mechanics takes a specific form in the ensemble interpretation, as we have

"The ordinary Fourier transform must be generalized to cover this case, and the function [(g)|?
must be interpreted as a probability distribution in the sense of Rényi. Certain conceptual problems
arise that have not yet been elucidated.
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mentioned: the formalism provides no guiding lines for the choice of an ensemble
on which to base the theory. Any attempt to formulate a suitable physical model
which would give rise to an appropriate ensemble must therefore lead us beyond
quantum mechanics. We shall outline in the last section a possible theory that does
just this; here we have first to face the third difficulty alluded to above: the existence
of proofs that a completion of quantum mechanics, of the sort contemplated here,
is impossible. In other words, we have to deal with the hidden-variable problem.
Much of the extensive literature concerning it seems to obfuscate the matter, and
I enter on it here only because I consider it to be much simpler that it is generally
thought to be.

The first proof of the impossibility of hidden variables was given by von Neu-
mann (1932) as a straightforward corollary of his derivation of the density-matrix
formulation for quantum mechanics. For many years this proof was taken to be con-
clusive, though many people felt misgivings about its implications (e.g. de Broglie
1956); then certain weaknesses in the derivation of the density-matrix results were
discovered, and for some time these appeared to justify a search for hidden-variable
theories. The question had acquired importance because of the appearance of a fully
worked out hidden-variable theory, due to Bohm (1952); this theory has important
weaknesses from the physical point of view (in particular with an implausible space
dependence), but it provided a counter example to von Neumann’s theorem —or
so it seemed. But further work, in particular by Kochen and Specker (1967) and
by Gleason (1957), then reestablished the validity of von Neumann’s density-matrix
theorem, and therewith also the hidden-variable corollary. A good summary of these
developments may be found in Bell (1966).

Yet, interesting though Gleason’s theorem certainly is, it is irrelevant to the issue
of hidden variables; for the validity of von Neumann’s result was never in doubt,
only his methods of proof. This, though obvious once it is pointed out, seems to
have been generally overlooked. From the ordinary Hilbert-space formalism, based
on pure states, the density-matrix formalism may be derived though an additional
postulate which seems unchallengeable; inversely, a pure state takes the form of
a special density matrix. Both connections can be found fully worked out in von
Neumman'’s book. As a consequence, if the density-matrix theorem had to be given
up in order to allow the introduction of hidden variables, the rest of quantum
theory would also have to be given up, which is just what hidden-variable theories
are intended to prevent.

Fortunately the way out of this dilemma is not difficult; in fact, it could have
been found in von Neumann’s book itself, for he carefully specified the hidden vari-
ables he proposed to exclude as deterministic, i.e. dispersionless. His corollary does
not apply to stochastic hidden variables. This becomes clear when it is observed that
the corollary is in fact the quantum-theoretical case of a much general result, valid
for any statistical theory. The general case is a simple consequence of probability
theory: consider the dynamical variable = of statistical theory, with a distribution
function ® P(z). This theory is to be embedded in a broader theory which contains

*Here we use distribution functions (which are integrals over probability densities when these
exist), to make the argument simple and general.
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the hidden variable h as well as z; this means that we must find a joint distribution
function Q(z,h) such that P(z) is the marginal distribution for z in it. Let R(h)
be the distribution of h and P,(z|h) the conditional distribution of z given h. We
have, from standard probability theory

h
Gl B [ P.(zlW')dR(K). (23)

If h is to be a hidden variable of deterministic type, with the fixed value A = ho,
then

{ 1 h>h
R(h) = (24)
0 h<hg
and thus
dR(h) = 8(h — ho)dh. (25)
Substituting (25) in (23) we have
Po(z|ho) k> ho, |
Q(I‘h):{ (zlho) 2 ho -
0 h < ho.
Therefore
P(z) = Q(z,00) = Pe(z|ho). (27)
Using (24) and (27) in (26), we have
Q(z,h) = P(z)R(h). (28)

We conclude from (28) that z and A are statistically independent. Since this argu-
ment can obviously be carried through for the set z of the dynamical variables and
the set h of “hidden” variables to be added to them, the variables of the original
theory are statistically and thus also functionally independent of the A’s, which
therefore are irrelevant to any explanation of the behaviour of the z’s. Nothing is
gained by adding the A’s. If we allow h to vary over a small interval, from kg to h;,
say, then

1 h>h
R(h) = { (29)
0 h< ho

and the argument is still valid outside this interval. Only if this interval is large
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enough to be significant within the original theory can there by any genuine con-
nection, statistical dependence or otherwise, between z and h.

Note that the conclusion depends entirely on the requirement of maintaining
the character of the original theory i.e. that the introduction of the hidden variable
h does not alter P(z); if this requirement is dropped the conclusion that h must
also be a stochastic variable no longer follows. Nor does the argument apply to the
introduction of h as a new parameter in P(z); it must be a new dynamical variable,
in the sense of being at least statistically linked to the other dynamical variables.

Returning to the particular case of quantum mechanics, the situation with
regard to von Neumann’s corollary is, then, that its validity need no longer be
dispiited but its meaning has to be reinterpreted. Stating it positively, we draw
from it the conclusion, not that hidden-variable theories are impossible, but that
they must be stochastic theories. Seen in this way, the corollary provides a useful
hint for further research, rather than figuring as an obstacle to it, as seen by the
Copenhagen school. The hint is borne out by the Bohm theory and indeed all
other hidden-variable theories that have achieved some sort of consistency: without
exception their hidden variables are stochastic in nature and are not dispersionless.

It is sometimes said that if hidden variables cannot be dispersionless then they
are useless. But it should be clear that this view is inspired more by a desire to return
to a fully deterministic, Newtonian kind of physics, and while quantum mechanics
(or rather the immense range of experimental results that it accounts for satisfacto-
rily) should not lead us to abandon the ontologically fundamental status of reality,
it should convince us of the limitations of a purely mechanistic physics. Moreover,
the idea that a stochastic theory cannot provide the basis for completing quantum
mechanics and so yield a deeper understanding of it ignores the lesson of statistical
mechanics: here we have an entirely stochastic theory that has enormously enriched
and broadened our understanding of thermal physics and has gone well beyond the
limits of applicability of the thermodynamics it was intended to underpin.

But statistical mechanics, as already noted in section IV, holds the further lesson
for us that the underlying classical mechanics differs markedly from it in character,
concepts and main quantities. This will be relevant below.

VII

To sum up, we have seen that, from the point of view of the ensemble interpreta-
tion, quantum mechanics is incomplete, that any completion should be stochastic
in nature, and that the resulting theory will likely be of very different character.
Several theories along such lines have been suggested in the past; the first would
appear to have been due to Fényes (1952). They have not, on the whole, been
very successful, and for this there are two reasons. One is a technical problem: the
best-known stochastic process is, of course, Brownian motion, and this misled many
workers into identifying the process underlying quantum mechanics with a Winger
process (the mathematical model for Brownian motion); that the two, though re-
lated, are different was first shown by de la Pefia and Cetto (1977a). There are now
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reasons, as we shall note, for believing that the process is not even Markovian. The
other reason is that without a physical model to serve as starting point, background
and touch-stone, .a mathematical description of a stochastic process, however inge-
nious, will be somewhat arbitrary and even ad hoe. Of course one has the great
advantage of free choice of a nice, simple, tractable mathematical problem if one
ignores physical models; but one runs the risk that the nice easy problem can be
quite misleading.

I propose therefore to outline here a theory that is far from having a finished form
as yet, but does possess a plausible physical conception to base its mathematical
structure on; and however provisional the present form of the theory may be, it
has already had some significant successes. This theory, stochastic electrodynamics,
owes its inception to Braffort and coworkers (Braffort, Spighel and Tzara 1954;
Braffort and Tzara 1954; Braffort, Surdin and Taroni 1965; Surdin, Braffort and
Taroni 1965) and independently to Marshall (1963; 1965 a,b) who gave it its name;
it has been further developed by Santos (1975), Boyer (1975), de la Pefia and Cetto
(1977b), Claverie and Diner (1976); the last three include a review of the earlier
work.

The underlying physical conception is simple: consider a charged particle, such
as an electron; in its movements it emits electromagnetic waves described by radia-
tion-reaction terms; if it is considered in isolation, it would therefore lose energy
and, in the case of an orbital electron, fall into the nucleus. This is the classical
picture, often considered as an argument for quantum mechanics. But —and this
is the central point of stochastic electrodynamics— the electron is not isolated; all
the other charges in the universe also emit radiations through the same mechanism,
and since these radiations are evidently incoherent, the electron being considered is
bathed in a stochastic radiation field. The problem to be solved is thus the motion
of a classical charged particle under the joint effect of a stochastic electromagnetic
field, the radiation reaction and any external force (e.g. the Coulomb attraction of
the nucleus) that may be present.

The radiation reaction is of course well known; it is given by the Liénard-
Wiechert potential, and for non-relativistic speeds is usually well approximated by
a term proportional to the third derivative of the particle’s position vector. In the
same approximation only the electric component of the stochastic electromagnetic
field need be taken into account. But because this is a stochastic force, we can at
best write a Langevin-type equation, and can derive conclusions from it only if the
probability distribution of this force is known. Here we see the significant advan-
tage of stochastic electrodynamics over earlier theories as a physically grounded
conception; for not only is the physical model plausible, but the stochastic prop-
erties of the background radiation field can be derived quite independently, from
considerations of relativistic invariance (Marshall 1963, Santos 1974) and others
(Jiménez, de la Pefia and Brody 1980). The spectrum so predicted coincides with
the quantum-electrodynamical one (w being the frequency),

h 3
plw) = D P il (30)
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but h is merely a proportionality constant that yields the amplitude of the fluctu-
ations in the stochastic background field; the use of the symbol h anticipates that
eventually ordinary quantum mechanics has to be recovered. This is the one point
in stochastic electrodynamics where this constant is introduced.

The equation of Langevin type for a particle of mass m and charge e now
becomes

d*z d’z
the so-called Marshall-Braffort equation, in which

% 2e? 39
" 3med (32)
and E(t) is the component along z of the random electric field (for simplicity we
only consider the one-dimensional case), for which the expectation value is

(E() =0 (33)

and the spectrum is given by Eq. (30). We shall not enter here into the details
of how phase-space and configuration-space probability distributions for particles
obeying Eq. (31) are derived, since they are complex and have already appeared in
the papers cited. Certain points, however, are relevant here:

a) The stochastic process considered here is markedly non-Markovian; but as
equilibrium is approached, the importance of the memory terms diminishes. Very
close to equilibrium, the radiative terms in (31) tend to cancel out, and the configu-
ration-space amplitude then satisfies the Schrédinger equation: quantum mechanics
is thus the equilibrium limit for this theory.

b) If we assume that an equilibrium state exists (this has not yet been proved for
all relevant cases) then it will be reached rather rapidly; for instance, the relaxation
time for an atomic orbital electron is of the order of 10~235. Before equilibrium has
been reached, the configuration-space distribution and the moment-space one are
not necessarily Fourier transforms of each other and so the Heisenberg uncertainty
relations may be violated (in the ensemble-interpretation sense, evidently, that the
product of the statistical dispersions may be less than %h). In a particle beam, no
equilibrium state in the strict sense can exist, if we take the beam to be infinitely
long; but even in a finite beam only quasi-stationary states should be expected, and
so the actually observed distributions of g and p could slightly diverge from [v(q)?
and |¢(p)|?, respectively; this purely qualitative argument was made use of above.

c) As the detailed analysis of the harmonic oscillator (de la Pena and Cetto
1979) in this theory shows, the quantum-mechanical discrete states are recovered.
That there exists a ground state of finite energy, at which radiation reaction and
absorption from the stochastic field balance each other, and that this state is stable,
could already be seen by simple “hand-waving” arguments (Claverie and Diner
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1976); that the energies of the excited states should also be correctly reproduced
was not so clear; but that these states should be shown to have widths (in the sense
that the instantaneous energy fluctuates and is equal to the quantum value only in
the mean) was surprising. This last result, it should be noted, fits in well with the
ensemble interpretation but not with the orthodox Copenhagen views.

d) A considerable number of detailed predictions have already been derived from
stochastic electrodynamics; these range from the Planck black-body spectrum to
the non-relativistic Lamb shift, and generally agree very well with the predictions
of standard quantum theory. But the theoretical structure is far from complete,
largely because no general mathematical formalism has yet been developed, and
problems have to be tackled piecemeal. Nevertheless, for a great many questions
rough qualitative arguments are available that show that at least in principle it
should be possible to answer them satisfactorily within the framework of stochastic
electrodynamics.

e) Stochastic electrodynamics does not agree everywhere with quantum mechan-
ics; unlike the ensemble interpretation of the latter, it is a new theory. However, so
far it has not proved possible to make predictions from it that differ in an experi-
mentally accessible way from the standard quantum results.

There is one feature of stochastic electrodynamics to which attention should be
drawn: it is from its very inception a theory of open systems. In more than one
sense this constitutes perhaps a more decisive break with classical physics than the
Copenhagen interpretation ever achieved. We are very far from understanding as
yet all the implications of this fact; but a highly significant consequence is that in
this theory there are no exact conservation laws, —only statistical ones. Hence all
symmetries will hold only on the average, and we may guess that conceivably this
will provide a mechanism to comprehend “spontaneous” symmetry breaking; but
this is speculation. What seems clear is that the ultimate consequences may prove
even more fundamental than the appearance of irreversible phenomena and hence
of “time’s arrow” when thermodynamics first —and as we now see, rather timidly—
broke through the restriction of fundamental physical theories to closed systems.

Thus we have here the beginnings of a hidden-variable theory that is intended
to underpin but also to go beyond quantum mechanics; in fact, the direction in
which such a theory should be sought for was pointed to by that interpretation.
The Copenhagen interpretation, on the other hand, never encouraged such a devel-
opment and in the view of some even forbade it.

VIII

By way of a general conclusion we may say that the ensemble interpretation, so
far from being nonexistent as has sometimes been stated (Hanson 1959), forms a
consistent body of ideas that removes or at least permits clearing up the peculiar
paradoxes arising in connection with the Copenhagen interpretation, that sheds light
on certain questions otherwise not even touched, and that rather strongly directs
further research along promising new lines. Nevertheless, not all its problems have
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yet been satisfactorily settled; much work remains to be done, though there is little
reason to expect significant conceptual breakthroughs from such investigations: it
is rather a matter of adequately completing what has already been outlined.

The future of stochastic electrodynamics is another matter; here even funda-
mental conceptual problems may have to be solved before it is possible to say that
this theory has firm foundations.

But what is to be stressed is that the philosophical problems felt to be peculiar
to quantum mechanics in the past simply dissolve in the ensemble interpretation;
this leaves room for tackling the genuine problems.

I would like to express my gratitude to J.L. Jiménez to whom many of the
results of section V as well as other points are due, and to Luis de la Pefa, for
numberless useful discussions and thorough reading of the manuscript.

References

G.S. Agarwal and E. Wolf (1970), Phys. Rev. D2, 2161, 2187, 2206.
S.T. Ali and E. Prugoveéki (1977), J. Math. Phys. 18, 219.

G.R. Allcock (1969), Ann. Phys. (N.Y.) 53, 253, 286, 311.

H. Arika and M. M. Yanase (1960), Phys. Rev. 120, 622.

V.I. Arnold and A. Avez (1968), Ergodic Problems of Classical Mechanics, Benjamin,
New York, N.Y.!

R. Balescu (1975), Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New
York, N.Y.

L.E. Ballentine (1970), Revs. Mod. Phys. 42, 358.
J.S. Bell (1965), Physics 1, 195.
J.S. Bell (1966), Revs. Mod. Phys. 38, 447.

D.I. Blokhintsev (1953), Grundlagen der Quantenmechanik, Deutscher Verlag der Wis-
senschaften, Berlin.

D. Bohm (1952), Phys. Rev. 85, 166, 180.
B. Boisseau and C. Barrabes (1978), J. Math. Phys. 19, 1032.
F. Bopp (1956), Ann. Inst. H. Poincaré 15, 81.

M. Born and W. Heisenberg (1928), 5¢ Conseil de physique Solvay, quoted in Jammer
(1966), p. 358.

T. Boyer (1975), Phys. Rev. D11, 790.

P. Braffort and C. Tzara (1954), C. R. Acad. Sci. Paris 239, 1779.

P. Braffort, M. Spighel and C. Tzara (1954), C. R. Acad. Sci. Paris 239, 157.

P. Braffort, M. Surdin and A. Taroni (1954), C. R. Acad. Sci. Paris 261B, 4339.
T.A. Brody (1975), Rev. Mez. Fis. 24, 25.



Problems and promises of the ensemble interpretation of quantum mechanics S43

T.A. Brody (1979), 6 Int. Cong. Logic, Methodology and Philosophy of Science, Han-
nover, Section 7, p. 222.

L. de Broglie (1956), Une tentative d’interprétation causale et non-linéare de la mécanique
ondulatoire, Gauthier-Villars, Paris, p. 68f.

M. Bunge (1963), The Myth of Simplicity, Prentice-Hall, Englewood Cliffs, N.J.
N.D. Cartwright (1976), Physica 83A, 210.

J.F. Clauser and A. Shimony (1978), Reps. Prog. Phys. 41, 1881.

P. Claverie and S. Diner (1973), C.R. Acad. Sci. Paris 27TB, 579.

P. Claverie and S. Diner (1975), C.R. Acad. Sci. Paris 280B, 1.

P. Claverie and S. Diner (1976), in O. Chalvet et al. (eds.), Localization and Delocalization
in Quantum Chemistry, Reidel, Dordrecht, p. 395.

L. Cohen (1966a), Philos. Sci. 33, 317.
L. Cohen (1966b), J. Math. Phys. T, 781.
L. Cohen (1966c), Ph. D. thesis, Yale University.

L. Cohen (1973), in C. Hooker (ed.), Contemporary Research in the Foundations and,
Philosophy of Quantum Mechanics, Reidel, Dordrecht, p. 66.

A. Einstein (1949), in P.A. Schilpp (ed.), Albert Einstein Philosopher-Scientist, Library
of Living Philosophers, Evanston, IIl., p. 665.

A. Einstein, (1953), in Scientific Papers Presented to Maz Born, Oliver and Boyd,
Edinburgh, p. 33.

A. Einstein, B. Podolosky and N. Rosen (1935), Phys. Rev. 47, 777.
I. Fényes (1952), Zeits. f. Physik 132, 81.

R.J. Glauber (1963), Phys. Rev. 131, 2766.

A.M. Gleason (1957), J. Math. Mech. 6, 885.

N.R. Hanson (1959), Am. J. Phys. 27, 1.

W. Heisenberg (1930), The Physical Principles of the Quantum Theory, Dover Publica-
tions, New York, N.Y.

W. Heisenberg (1955), in W. Pauli (ed.), Niels Bohr and the Development of Physics,
Pergamon, Oxford, p. 11.

R.L. Hudson (1974), Reps. Math. Phys. 8, 249.

M. Jammer (1966), The Conceptual Development of Quantum Mechanics, McGraw-Hill,
New York, N.Y.

M. Jammer (1974), The Philosophy of Quantum Mechanics, Wiley, New York, N.Y.
J.L. Jiménez, L. de la Pefia and T.A. Brody (1980), Am. J. Phys. 48, 840.

P. Jordan (1936), Anschauliche Quantenmechanik, Springer, Berlin.

S. Kochen and E. P. Specker (1967), J. Math, Mech. 17, 59.

V.V. Kuryshkin (1972a), Ann. Inst. H. Poincaré 17, 81.

V.V. Kuryshkin (1972b), C.R. Acad. Sci. Paris 274B, 1107, 1167.



S44  T.A. Brody

V.V. Kuryshkin (1973), Int. J. Theor. Phys. T, 451.

B. Leaf (1968), J. Math. Phys. 9, 65.

H. Margenau (1958), Philos. Sci. 25, 23.

H. Margenau (1963a), Ann. Phys. (N.Y.) 23, 469.

H. Margenau (1963b), Philos. Sci. 30, 1.

H. Margenau and R.N. Hill (1961), Prog. Theor. Phys. 26, 722.
T.W. Marshall (1963), Proc. Roy. Soc. A2786, 475.

T.W. Marshall (1965a), Proc. Camb. Phil. Soc. 81, 537

T.W. Marshall (1965b), Nuovo Cim. 38, 206.

C.L. Mehta (1964), J. Math Phys. 5, 677.

A. Messiah (1959), Mécanique Quantigue, Dunod, Paris, vol. I, ch. iv.
R. Von Mises (1931), Wahrscheinlichkeitsrechnung, Franz Deuticke, Vienna.
B. Misra and E.C.G. Sudarshan (1977), J. Math. Phys. 18, 756.

J.E. Moyal (1949), Proc. Camb. Phil. Soc. 45, 99.

J.Von Neumann (1931), Math. Annalen 104, 570.

J.Von Neumann (1932), Mathematische Grundlagen der Quantenmechanik, Springer,
Berlin.

J.L. Park and H. Margenau (1968), Int. J. Theor. Phys. 1, 211.

. de la Peiia and A.M. Cetto (1975), Found. Phys. 5, 355.

. de la Pefia and A.M. Cetto (1977a), J. Math. Phys. 18, 1612.

. de la Pefia and A.M. Cetto (1977b), Int. J. Quantum Chem. 12, Suppl. 1, 23.
. de la Pefia and A.M. Cetto (1979), J. Math. Phys. 20, 469.

. Penrose (1970), Fundations of Statistical Mechanics, Pergamon, Oxford.

. Piquet (1974), C.R. Acad. Sci. Paris 279A, 107.

. Prugovecki (1976), J. Math. Phys. 17, 517.

. Prugoveéki (1979), Found. Phys. 9, 575.

. Roman (1965), Advanced Quantum Theory, Addison-Wesley, Reading, Mass.

. Rosenfeld (1957), in S. Kérner (ed.), Observation and Interpretation, Butterworth,
London, p. 41.

A.A. Ross-Bonney (1975), Nuovo, Cim. 30B, 55.
G.J. Ruggeri (1971), Prog. Theor. Phys. 46, 1703.
E. Santos (1974a), Nuovo Cim. B19, 57.

E. Santos (1974b), Nuovo Cim. B22, 201.

E. Santos (1975), An. Fis. (Esp.) T1, 329.

T.S. Shankara (1967), Prog. Theor. Phys. 37, 1335.
J.R. Shewell (1959), Am. J. Phys. 27, 16.

H o E O QR



Problems and promises of the ensemble interpretation of quantum mechanics

J.C. Slater (1929), J. Franklin Inst. 207, 449.

M. Surdin, P. Braffort and A_ Taroni (1966), Nature 210, 405.
K. Urbanik (1967), Studia Math. 21,117,

Y. Yoshihuku (1977), Chubu Inst. Technology preprint 77-2.

S45



