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Problems and promises of the ensemble
interpretation of quantum mechanics*

Abstract. Artcr a bricf outline of the ensemble interpretation, its ad-
vantages and promiscs are described, including both the elimination of
the puzzles that beset the Copenhagen interpretation and newer lines of
rescarch such as the application of ergodic theory to quantum mechan-
ks. Three problems facing the ensemble interpretation are discussed, of
which that of joint probability distributions is seen to require further
research; sorne possible lines are indica.ted. Certain philosophical prob-
¡ems are discussed, including that of the rela.tion between formalism and
interpretation, where it is suggested that the formalism neither implies
nor is indiffercnt to the interpretation. The hidden.variable question is
thcn considered; the \'on Neumann theorem is s€'€n to be a special case of
a ver)' general theorem, and is interpreted to mean that on1y stochastic
hidden-variahle theories are acceptable. The outline of a possible such
theory is giw'n.

The puzzlcs and paradoxcs of quantum mechanics are, as is wcll known, rather
dosely associatcd wilh lIJe Copenhagcn intcrprctation; this designation will here
be takcn gcnerically lo covcr lhe wide variety of views which has in common lhe
conccption thal lile wave fundion describes a single system. The list oí thcse dií-
ficulties is long and has not yet cea."Oedlo grow -witness lhe recent discovery oí a
Zcno-type paradox in quantuIIl rncchanics (Misra and Sudarshan 1977). They may
uscfully he elassificd according lo lile particular aspect oí the Copenhagen view (or
v¡ews!) to which lltey relate. Mosl of lhcm will be found lo faH into one oí three
groups:
a) Tbose associaled with lhe basic ql1cslion conccrning the nalure of lhe wave

íUllclion, e.g. lhe problems oC lhe wave.particle duality. This variety has given
rise lo a great deal oC heated discussions bul is usually Bol susceplible lo precise
slalcmcnl in malhematical languagej lhis faet does nol diminish their impor.
tance bul does complicatc lhcir analysis.

b) Those d('rivahle in afie way or another from the work oi Einstein, Podolsky and
Rosen (1935); lhese inelude lhe wdl-known puzzle of Schrodinger's cal and ils
ramificalion al lhe hands of \Vigner's friendo Jlere the mathematical formulatioIl
was made c1ear fram tIJe very bt'ginningj unhappily it cannot be said lhat the
large IIIl1nbcr of papers lhat over lhc years have attcmpted to analyse thcse
prohlclIls have shed any significant light on them.

'Presented al the SyrnpOIiium on lhe philosophical aspecls of quantum theory. Dubrovnik, 2~6
April 1980.
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e) Thosc linked to ccrtain specific poinls in the Copcnhagen intcrpretation which
ma)' be doubted withoul affccling lhe maio part oC that structurc. Of this natUfe
are the questions raiscd by lhe projection postulate.

The third group is nol very relevant lo lhe prcscnt purpose, Coc obvious reasoIls,
and 1 shall nol further discuss thero. My maio a¡m hefe is rathcr lo show, in lhe
first place, that lhe ensemble inlerprclation oC quantum mechanics successfully dcals
with lhe difficulties in groups a and b; lhen lo vcntilate certaín philosophical qucs-
tioos concerning lhe relationship helween lhe mathcmatical framcwork and lhe
interprclation oí aoy physical theory; thirdly, in thc light oí thcsc considerations, lo
examine (crtaio problems in the ensemble intcrprctation and thc' attempts made to
solve them; and finally, to consider thc outlook for the future work. Ilut beforc these
points are raised 1 will briefly outlinc the nature of the ensemble interpretatioll.

\Vhat 1 caH here the ensemble interpretation is essentially what is commonly
known as the statisticai interpretation; but I mark the differencc for two rea..<;ons.
One is that the term "statistical" may Le misleading, since it has sometimcs Leen
used to rcfer to Born '5 conception of the wave fundion as a probaLility amplitude
(HeisenLerg 1930, Messiah 1959). The other reason is that the statistical inter-
pretation is usually left rather unfinished, while I propose to study the proLlems
involved in rounding it out and so making it the ba.sic interpretation of aH quantulIl
mechanics.

The ensemble intcrpretation was auumbraleJ by Slater (1929) and furthcr dc-
veloped by quite a number of authors, including Einstein (19.19,1953), ,\targcnau
(1958,1963 a,b) and Blokbinlsev (1953). A recent review (lJallantine 19iO) providcs
a good acco'lllt pf the arguments Icading to this inlerprctation, so that here I need
only touch on the central points (sec also Ross.Bonney 1975).

In the ensemble inlcrpretation lhe wave fundioo is takell to rcfer not to one
simple system but rathcr to an ensemble of such systems, in the sense of statistical
mechanics: a (possibly infinite) set of theoretical replicas of lhe system under study;
this set is described by a measure fundioo Jl(dx) which yields the rclalive abundance
within the set of systems that lie in the region dx of the underlying sample space,
usually takcn to be thc pitase space of classical mf'Cilanics. In such an ensemble thc
thcoretical predidion for a function ¡(x) is the cxpedation value,

(1) = In f(x)¡l(dx) (1 )

where n is the volume of the phase space,l and f may, of coursc, also depend on
the time t.

One point must be stressed: the ensemble is a theoretical construd, and as always
its use does not neccssarily imply thal only averages o\'cr many measurements of
the sarne kind can be compared to its prcdidions (and evcn less that it can only
deal will systerns composed of many particles); 1 return below to lhis question.

\Vhat the ensemble interpretation maintains is, in other words, that the cnscrn-

IEq. (1) MSumes that the measure ¡;. is normalized. A very dear discussion or ensembles will be
round in Ralaescu (1975).
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ble average (1) coincides with the quantum-mechanical expectation value, provided
a suitable ensemble is chosen. But as will be seen below, it is precisely this choice
of an ensemble that the quantum formulation does not determine uniquely: it is
here that we rediscover the incomplcteness of quantum mechanics first pointed
out by Einstein, Podolsky and Rosen (1935). As will be secn in scetion VI, this
incompletcness points beyond quantum mechanics and opens up a fruitful field of
rescarch. Within the quantum framework the nonexislence of well-defined criteria for
choosing an appropriate ensemble crea tes no problem: the quantum formalism has
precisely the aim of allowing us to calculate expcctation values without specifying
explicitly tite ensemble used for this.

But this does not mean thal all is plain sailing: there are still certain problems
raised by the ensemble interpretation, among which the issue of joint probability
distributions occupics pride of pace; accordingly, it will he reviewed in section IV.
This, howcver, requires the clearing up of sorne philosophical malters, and these,
togethcr with sorne rclated points, will also by discussed below, togcther with sorne
possibilitics for resolving the joint-probability problem.

JI

Now whal does the ensemble interprelation achicve?
In thc first place, conceptual c1arity. As has becn stressed, for instanre by

Penrose (1970), the nolion of an ensemble is fundamental not only for statistical
mechanics hut is a basic concept ror thc cognitive process we cal! scientific research.
A particular aspect of this situation is the role it can play in adequately explicating
the much confused idea oC probabilily (Drody 1980)¡ this explains its relevance
to quantum mechanics, where it has been c1ear for sorne time that the two chief
interprctations are closely linked to the two most prevalent views concerning the
nature or probability (Popper 1967; see also Ballentine and Brody el al. 1979).

The conceptual c1arity I refer to is particularly cvident in thc clucidation the
ensemble interpretation ofTers of lIeiscnbE;rg's so-callcd uncertainty p~inciple: if ti
is thc (Hcrmitian) operator corresponding to an observable a (i.e. a quantity for
which a measuring proccss is known) such that the values observcd for a state t/J
yield a mean that, within experimental error limits, corresponds to (t/J[alt;&), then

(L\a)' = ("'I(ii - ("'lal"'})'I"') (2)

is the thcoretically predicted statistical dispersion of the measured values oC a.
Similarly for the operator b. And if a and b do not commute,

la, b] = ¡hi (3)

for instan ce, then

(4 )
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Here 6.a,.ó.b can ooly be inLcrpretcd as standard dcviations in thc IIsual statistical
sensc, and the Cad that for (4) to hold the)' must bolh be defincd with the sarnc
1/J only means that wc must have a state-prcparation procedurc which can generatc
an indefinitcly long sequence oC syslcms bclonging lo lhe ensemble described by 1/;;
00 sorne oí thcse systcms we measurc a, on others wc rncasurc b. It is nol necessary
that a an"d b should be rncasured 00 the same syslems. Thus ó'a and ó.b bear no
relation lo the experimental errors ba and 6b; fortunately so, for otherwise it might
prove difficult lo provide experimental proor for tile validity oC (4), as is very clearly
cxplained by Ballentine (1970).

Similar conceptual simplifications arise in thc considcration of the measurement
problem. This has become a prohlern only because, io a view that associates the
wave function w¡th an individual syst.em, the predietion that differenl measured
values occur with nonzero probabilities is incompat.ible with the faet that only one
of these va)ues is obtaincd in cach rneasurernent while the others do nol oeeur at aH.
\Vhal privileges these values? We do not know; henee the need for von Neumann's
projection postulate and aH its undeshahle consequences. The diffieulties are often
further eompounded by the quite unwarrantcd a'isumption that the measurerncnt
process does not alter the value of the rneasured quantity (of course, if 1jJ is an eigen-
state of Á with eigeovalue a, then At/' is an eigenstate with the samc cigenvaluc; hut
no principie underlying quanlum mechanics allows us to ¡dcntify the mathematical
effeel of A with the physical interaction bctween the systcms dcscribed by 1jJ and
external systems) and by lhe neglect of the distinction betwecn state preparation
and state measurernent. Any physical experimeIJt begins by suitably preparing the
system under st1Jdy; the system is then submitted to whatever interaction is the
objeel of the experiment, and finally suitable measurernents are carried out. There~
fore a state prcparalion is a process that leaves the system in a known state; while
state measurement determines, at Icast partiaHy, what state the system is io as
it eoters the measurement. The system's state befare stale preparation and after
measurement are of no interest, aod in the second case may be mcaningless when the
measuremcnt is destruelive. Therc is thus a symrnctry undcr time rcfiection bctween
preparation and measurement; hut the symmetry is oot complete, for not every
measurement procedure 'can be turned iuto a prf'paration mcthod. The distinction
between state preparation and measurcrnent, established clcarly by Margcnau (1958,
1963 a, b), is vital. Among other poinls, it permits defining the proper significance
containC{1 in the projedion postulatc, namely that aftcr state preparation by means
of a proccdure describable through an operator Á, the system will be in an cigenstate
IOi) helonging to the cigenvalllc (Y¡ o~ Á, if the slIhensernhle i is scleded. The last
pbrase is essential, for without a sclc('tioll a mixed state containing aH eigenstatcs
of Á is oblained; in a Stcrn-Gerlaeh arraratlls, for instance, we obtain a beam of
particles with aH spin projec:tiolls direetcd upwards only if \'iC sdeet that part of the
split beam which goes through the llpper slit. OIl t!Jeotiwr band, if we replace the slit
by a counter, t1lc particles are absorbed: wc have turned a prcparation proccdure
illto one of measurcment, hut the projectioIl postulatc is now IOcaningless. It is
the confllsion betwecn preparation and lOeaSUreITlcnt whieh generales the rnany
,.h .•"r(litit.!'¡ ;:lOn;¡rf'nt,lv dNiw.d frorn the uro;eetioo uostulate.
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Once these unnecessary confusions are eliminatcd the discussion of measure-
ments in the ensemble interpretation is very simple (once more follow Ballcntine
1970): tne expectalion value is found from the basic rule

(Á) = (tI>IÁltI» (5)

and corrcsponds, to within experimental error, lo the mean of a sufficiently large sel
of experimental determinations of A on similarly prepared syslems (i.e. aH belonging
lo lhe ensemble dcscribed by tI». Suppose IS; o.) lo be lhe eigenslale of Á for lhe
system S lo be measured, and lA!; Jlj} lo be those states of the rneasuring apparalus
Al whieh are rnacroscopically distinguishablc, l.i\f;Jlo} being the initial state of M.
Then lhe initial state of the system S+M will be IS; o,)IM; 1'0); if we now write V
for the evolution operator of the interaction betwccn S and .\1, the final stale wiIl
be

VIS;o.)IM;l'o) = IS;~.)IM;ll') (6)

sayo The state 4J1 of S may but necd not coincidc with Oi and in general is a
functional of it (Araki & Yanese 1960). If instead of an eigenstatc of the quantity
to be rneasured we have a state

IS;tI» = ¿(o,ltI»IS;o,),
then

VIS; tI»1M;1'0) = ¿ (o,ltI» IS; o,)IM; 1")', (7)

and the probability of the macroscopic obsc.rvation 1'. is p, = I(ooltl>W, meaning that
ir we repeat the state preparation yielding t/J and the measurement of A a sufficient
number oí times, the relative frequency of our finding ¡li is just pi. If, then, the states
IA1; Pi > are distinguishable at the macroscopic level, the systcm S must have had
the value Qi for A with just that probability pi. Jt is this whieh makes Al into ao
appropriate measuring system. No peculiar phenomena such as the "'collapse of the
wave function" is involved. SchrOdingcr's cat presents no problem: there is now a
multiplicity of thcm, half of them being dead and the othcr half alivc; which one of
them we look at is not, however, implicit in the wave funelion.

The only remaining question concerns the simultancous measurement of more
than one quantity. The problem appears, as expected, when the .opcrators for these
quantities do not commutc. It is suprising that the textbooks make at bcst confusing
rcference lo this problem, for simultaneous measurement is one of the most widely
employed experimental techniques¡ indecd, in bubble ehambers the momentum of
a particle is derived from a set of position measurements which yicld the eurvature
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in the magnelic fie1d.2 Surprisingly littlc work has becn done 00 lhis question since
the p;oneering work of Park and Margenau (1968). They showed that the non-
commutativity oC operators docs nol imply the incompatihility oC the corresponding
rncasurerncntsj they affee anal implausible conjecturc that therc cxists a lypc oC
joint measurement (which they term historical because its rcsults depend on carHee
statcs oC the system), that is the only afie always feasiblc, and thcy furnish examplcs
oC lhis type (the curvalurc rncasurcrncnt 00 bubble-chamhcr lracks belongs to it, as
do time-of-flight experimcnls). This conjecturc has nol to my knowledge becn fully
validated yet.

It is worth adding, since there exists much confusion aboul the mattee, that there
is no connection betwC'Cn non-commutativity and corrclation. Thus position and
momentum of individual particlcs are in sorne experimenlal .••iluations so strongly
correlated that we can deduce one £rom the other; while two perpendicular spin
componcnts are quite uncorrelated.

A quite different directioll in which the ensemble interpretation has shown no-
table promise is in the study of the ergodic propcrtics of quantum states. The
ensemble rcpresented by thc wave fundion t/J has, in general, a time dependence,
though for a stationary state of energy E this takes the relatively trivial form
exp( -iEt/h)¡ it makes sense, thercfore, to ask under what circumstances ensemble
averagcs may replace the temporal average for a single system -which is the most
fundamental of the propertics that ergodic theary (sC'CC.9. Arnold and A\'ez 1968)
has shown to be rcle\'ant. It is suprising that such qucstions should never ha\'e
b{"cnasked until quite recently; the first ones to do so were Claverie & Diner (1973,
1975), who defincd the (orrdation fundion of an operator /1(t) (in the Heinsenberg
picture) as

(8)

and then showcd that, firstly, for a stationary quantum state it depcnds only 00

the difference T = t - t/ and so is stationary in the storhastic.process sense also;
and secondly that if the quantum state is non-degcncrate, then the vafiance of the
quantity a(t) correspon~ing to A(t) in such a way that its ensemble mean is the
qllantum-mechan;cal expectat;on value NIAI,p) tends to zero as 1-2: thus we have
a strong ergodic property. Numerically, it is found that ergodicity is reached in a
surprisingly short time; for the average for any operator is within one núllionth of
its ensemble average wheIl t exceeds 10-10 seco 00 the other hand, an unconfined
system is never ergodic.

Thcse results are highly relevant lo the intcrpretation of quantum mechanics.
Among other points, they go a long way to clearing up the sourre of many confusions;

lOn more than one oecasion, a bright stude-nt has interrupted my dillcu8!lion of bubble-ehamber
techniques and stated that this wa.'l impossible, be<:ause the laws of qUl\ntum meehanics forbid
the simultaneous determination of non-cornmuting quantities. This is explicitly stated to be the
case even by reputable authors, r.g. Roma.n (1965), section 1.2: "the necessary and sufficient
condition of the simultaneous mea.••urahility of two or more observables on any system is that the
eorresponding operators commute"'.
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for instance, it is cvident that measurements on individual hydrogcn atoms (and
similar confincd non-degcneratc systems) are well rcprcscnted by ensemble averages
for they usually take a much longer time than that nceded to achieve ergodieity.
This is the reason why the single-system ioterpretation of the Copenhagen type
could develop and.achieve a persuasive series of successes; it is also the rea.~mowhy
they ereate so many paradoxes for situations like the famous double-slit experiment,
where ergodicity fails and therefore the predictions of the quantum-mechanical en-
semble corrcspond only to averagcs over many measurements: the passage of a single
electron, whichever slit it goes through, never creates a di[radion pattcrn.

Mueh further work remains to be done 00 these and relatcd questions; but
it is already evident that sueh investigations wilI shed light on sorne very obseure
comere of quantum mechanies, as for instance the unsatisfactory description we llave
of proeesses like the separation of Hi into H+ + JI; this problem is well known to
quantum chemists (see e.g. Claverie and Diner 1976), but ignored by physicists.

111

Tbe ensemble interprctation thus offers the advantages of conceptual simplicity and
c1arity, of freedom from paradox (so far as we know)l of a quite natural fit to the
experimental situationl and o£great possibilities for further rescarch. \Vhy then has
ii not simply displaced the Copcnhagen interpretation? There exists a philosophical
bias which 1return to below; but there are also difficulties more directly linked to the
physics of quantum phenomena, and these may be examincd under three headings.

The first one conccrns the existencc of diserete states. 1£we accept the ensemble
interpretation, quantum mechanics has a basic structure rather like that of statis-
tical meehanics, and one migbt thereforc expcct that distribution fundions which
are Dirae 6's (or sums of them) would appear only as limiting caSCS¡in quantum
mcchanics, however, such disiribution functions appear to be fundamental. The
diffieulty vanishes once it is noticed that cven in quantum situations diserete states
(in the mathematieal sense) can only be an extrapolation: £or such states appear
only in systems that are esscntially confined to a fiRite volumc (described by a
square.intcgrable wave function) and have no intcraction whatsoever with anything
outside it, and this is in fact an idealization which real systems at best approximate.
From a slightly different point of view, an energy eigenstatc, for instan ce, must have
a certain finite width, otherwise its lifetime is infinite, it can never dccay and there-
fore cannot be observed¡ we should not know about its existence and if the theory
predicted it should judge the theory wrong. Here, then, the ensemble interpretation
suggests that the basic elements oí the quantum formalism be extended so as to
consider primarily open systems in intcractioo with tbeir surroundings, and closed.
systcms only as limiting cases. This point will be touched on again below.

The second difficulty to be looked at hece arises írom the conclusion many
physicists have arrived at that joint distributioo fundions for non.commutating
observables cannot exist in the quantum formalism. The argument may be set out
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in the following points, which wc number ror thde discussion hclow; they are largcly
adapted from Cohen (1966a).

(i) The ensemble oC quanlum mechanics are charactcrized by probability dis-
tributions ayer a classical phase spacc, augmentcd whcrc nccessary by variables
that account Coc spin clc. (In what follows we have no nccd oC this generality and
thcrcfore festrict ourselves lo a rhase space (p, q) with olle dcgrcc oí freedorn, where
q is the position and p lhe morncnlum oC a particlc.)

(ii) The probability distribution3 J(p,q) must satisfy the following eonditions:

and

J(p, q) ~ Oalmost every where

J J J(p, q)dpdq = 1

J J(p, q)dp = 11f(q)12

J J(p, q)dq = 1<¡?(p)l2

(9 )

( 10)

(11 )

(12)

whcre t/J(q) = t/J(q, t) is lhe coordinate wave fundion Coc lhe slate uodee consid-
eration and <¡?(p)= (hh)-./2 J 1f(q)exp(ipq/h)dq is the corresponding momentum
wave funetion. Conditions (9) and (10) are needed so that J(p,q) is a proper density
function roc a probability dislribution, while condition (11) stipulates that it should
have the correct marginal distrioutions for the prooabilitics of finding "alues for
thc position or the momentum. Condition (10) is rcdundant, being implied by thc
normalization of t/J or <p, but is notro for completeness' sakc. AH integrals go from
-00 to oo.

(iii) For each quantum-mechanical operator A. therc should exist a function
a(p, q) such that the expectation value

(Á) = (1fIÁI1f) = J J a(p,q)J(p,q)dpda (13)

(iv) Furthermore, if anothcr opcrator iJ is a fundíon F(A), then the corrl->"
sponding fundion b(p,q) whieh.enters into (13) should satisfy

b = J(a). (14)

Jt can now be shown that

3For the 8ake of 8implicity, J have wtitten probability densitie8 /(p, q) to dieCUS8di8tribution8 bete,
tbough the diffetentiability of the di8ttibution F(P', q') = Pr(p S pi, q S q') i8 not a requirement
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(v) There exisls no uniquc rule for deriving a dislribulion f(p, q) for a given wave
function l/J lhat will satisfy all lhe ('onditions of points (ii) amI (iii); and moreover,

(vi) 'fhere exisls no fUllction f(p,q) that satisfit-'S point (iv) for any Fas weH
as (ii) and (iii).

CondusioIl (v) was first brought Ollt in a paper by Shewell (1973); bolh are
praved (thaugh differently stated) in Cahen (1966b, 1966c).

These conclusions are aH the more surprising in lhat joint dislribution funclions
have found wide use in variolls applications, and are particular1y useful in quanlul11
oplics (Agarwal and \Volf 1970). Indc('d, lhcir hislory go('s back tu 1932, when
\Vigncr (1932) inlroduced a dislrihulion

(15 )

as a phasc-space representalion of V-'. This is still the best known of the distributioll
funct,iolls, and it has forlllcd t.hc hasis of a scriolls attcllIpt. lo restate quantum
mechanics as a phase-spacc lhcor)" (~loyaI19.19). Yet lhe \Vigllcr funclion of Eq. (15)
is Tlol a probahilily functiotl for all of <¡uanlum nwcilanics; it fails in lhree aspects:
it salisfies condit.ion (iia) ahovc at bcsl for thc ground stalc, but is non-positivc
alfl'ady for lhc first excitr'd state of the harlllollk oscillat.or; for funct.iolls a(p, q)
wiJi('h cannot be \\Tittcn as a'(p) + a"(q) it can gi,"c lhe wrong expectation value;
amI -a special but important case-- it prcdicts finitc widths for t.he excited st.ates of
systcms. Concerning the first point, it. has been shown (Urbanik 1967. lIudson 1973,
Piquct 19H) that the \Vigller fun('tioll is non-Ilcgilt.ivc for ti\(' cohercnt. stales first
introdllced by Glauber (196:1); but. how('\'('r uscful I.Il('se hav(' in pract.ice IHo,.ed lo
be, il is not possible to rcdun~ ql1anlulIl Illcchanics to them, ilud thcrcforc several
authors, among ot.hers Mchta (196.1) and ~targ('nall and Hill (1961). have propos('(i
alt.crnatives to Eq. (15). Thal nOIl(' of thcsc nlll be satisfadory is thc rcsult of
Cohen's work, who ""as able to introduce a general form of which ear1ier proposals
are particular ('ases:

Supposc, in c1assifical statistics, \\'(' are giwll il.probability deIlsity f(x) for a set
of variables x = (XI, ... , xn) and wish to determine the dCllsit.y for a set oC variables
y = (YI, ... , Yu) which are fllnctions y(x) of tl)(' x. A (,ollv('nicnl way to carry out
the lransformation is lo find the charach'ristic ftllKtion for t.he y, i.c the Fouricr
lransforrn of f in the y spa('c

,(O) = J J(x) l'xp(iO. y(x))dx (16)

and liJen to rc('ovcr the looked-for dClIsity f(y) él.'i the in\"CTS('Fouricr transform

, 1 JJ (y) = (2~)" X(O) exp( -jO. y)dO. ( 17)

In (lua.lltum IIlcchanics x = (1',q) alld tlw y we are interes1<'d ill are t.he operalors p
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and q. This prescription thercfore implics that (writing 0, T fOf the 1.•....0 components
018)

x(O,r) = J ljJ'(q)expi(Oq + rp)ljJ(q)dq

= J ljJ'(q) expniOrh) exp(iOq) exp(irp)ljJ(q)dq

= J ljJ'(q - ~rh)ci9qtb(q + ~rh)dq. (18)

The Fouricr ¡nverse of lhis is the \Vigner functioo (15)¡ hul the notion that we musl
n'place p, q by p, q in the exponcntial ¡s, as Cohen (1966b,c) shows, insufficicnt, and
a more general corrcspondcnce

expi(Oq + rp) ~ g(O, r) exp i(Oq + rp)

satisfies the requiremcnls (ii) and (¡ii) provided

g(O,O) = g(O,r) = 1,

and

g'(O,T)=g(-O-r).

( 19)

(20)

(21 )

Eq. (20) is nceded lo ensure the quantum-rncchanically prcscribed marginal distribu-
tions (11) and (12), while Eq. (21) ensllfes that aH operators A(p,q) are Herrnitean
and so have real eigcnvalues. \Vigner's functian now corresponds lo the case 9 = 1.

It is not difficult now lo show that thcrc exists no one function g(O, r) such
thal tbe conditions (ii) and (¡ii) are satisficd foc aH tP -which provcs conclusion
(v)- and that there cannot exist any g(O, r) lor which condition (iv) is satisfied
-which proves conclusion (vi). These two conclusions not only create foundational
difficultles ror the exlensive applications of distrilmlion functions (and the Wigner
[undion in particular); they are'also awkward for the ensemble interpretation. Since
lheir malhematical background is irH'proachablc, we musl critically examine the
points (i) to (iv) on which they are hascd. But this rcquires the clucidation of
certain philosophical points, a malter to which we now turno

This will at the same time create a basis ror discussing the third difficulty of the
('nsemble intcrpretation, namcly that in it Einstein's thcorem (Einstein, Podolsky
and Rosen 1935; Einstein 1919) must be taken seriously and the consequence must
be faced that the quantum.mcchanical dcscription of nature is ¡ncomplete.
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IV
The origins of quantum mechanics are c10sely linked with strongly antimaterialist
philosophical positions. This is not the place for exploring them, a task which has
alrcady becn well carried out by others (e.9. Jammer 1966, 1974); what is relevant
here is that this created an cvident bias against the ensemble interpretation because
of its open association with the view that the physical world has a reality which is
independent oí and both 10gicalIy and chronologically anterior to our ideas about
it. Such conceptions have been rcpeatedly expressedj the first to state them explic.
itly was, perhaps, Jordan (1936). As a consequence the precise arguments of, for
instance, Einstein (1949, 1954) have becn either ignored or misunderstood, and the
ensemble interpretation has remained underdevcloped, its problems stressed rather
that studied, while the peculiarities and paradoxes oí the Copenhagen interpretation
have been taken, with a naive pride, as signs of its revolutionary character. It is time,
1 fecl, for us to abandon such attitudes and to behave as physicists rather than as
blind defenders of OUT respective Weltanschauungen. If, therefore, 1 proceed from
a materialist point of view (in the sense indicalcd above), this is to be taken as a
postulate whose justificalion is to be found in its successes, no more -and no less.

This position has significant consequences for the concept of probability used in
the ensemble interpretation. It can evidently not correspond to any of the so-called
subjective views, whether Keynes or de Finetti, for thcse can be consistent only
with a rejection of objective reality a..c¡ the starting point Cor the philosophy (of
scicnce as oC anything else). Unfortunately the frequentest viewpoint also creates
difficulties, duc largely to its positivist origins which lead it to ignore the subtle
hut fundamental distinction between theory and experiment; nevertheless this view
(often called objective) should have led the first generations of quantum physicists
to something like the ensemble interpretation.

Yet this did not happen. Those founders of quantum mechanics that thought
along Copenhagen lines tended towards one or another subjective view of proba-
bility; Heisenberg's interpretation oí it as sorne sort of Aristotelian potentia is welI
known (Heisenberg 1955). Those that followed the ensemble interpretation on the
whole accepted von Mises' formulation5 (von Mises 1931), and then ran into trouble.
For sorne quantum mechanics became a kind oC theory íor many particles when they
interpreted the frequentest conception of probability too strictly as an experimental
prescription; it is. to avoid 5uch misunderstandings that 1 have preferred here to
speak of the ensemble inpretation instead oC the statistical one, as it is traditionally
known. For most the snioothing.over oC the theory-experiment distinction in the
positivist tradition underlying von Mises' work made the agreement oí theoretical
prediction and experimental result almost automatic, and thereíore "automatically"
eliminated the whole region of problems that would have loo to an ergodic theory
of quantum mechanics;4 we saw aboye that the first fruits oí such a theory already
provided useful insights.

"This is particularly striking in the work oC J. v. Neumann, who made significant contributions te
the development both of quantum mechanics and of ergodi<: theory, who carefully Cormulated tbe
p08tulat.e8 of quantum mechanks in terms oC statistica) ensembles, and who yet did not realize
how neatly one part of his work would apply to the other (v. Neumann 1932).
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It was necessary, thercforc, to dcvclop a conceptioo oC probahility that could
fit bettcr ioto aD inlerpretalion oC quanlum mcchanics bascd 00 lhe idea oC 3n

ensemble. In Cad, lhe ensemble concept turned out to providc preciscly the requircd
structurc. This idea is disCllsscd elscwhere (Brody 1975, 1979). Befe we need only
say tha1 a full justificalion can be found for lhe use oC enscmbles on lhe hasis tha1 a
physical theory must caver a ccrtain rauge oC similar situations and must thcrefore
be aD approximation for each particular situation; that averaging aver lhe ensemble
provides a way for selccting the common (calures among aU lhe situations covcred by
the ensemble; and lhe probability is lhen inlroduccd as the ensemble average of one
particular kind of property. It win be clcar that since the ensemble is a theoretical
construct. the agrccment of its theoretical predictions with experimental results is
not automatic; it must be striven for, by adjusting and improving the ensemble until
the fit is adequate. Lastly, if the ensemble is to describe physical situations, it will
have a time evolutioo; thus ergodic concepts can appear naturally in this picture,
and they turo out to be very relevant to understanding tIJe role of probability in
our descriptions of nature.

00 such a basis the ensemble intcrpretation of quaotum rnechaoics is quite
natural, and the conceptual difficuitics and misllnderstandings 1 have mentioned
aboye do not develop. But becanse things did not in (ad happen in this way, certain
further points require discussion before going OH to consider possible solutions to
the difficulties of the ensemble interprctation.

The first one conceros the relationship bclwecn a thcory's structure and its
interpretation, where two opposing viewpoints can be found. One is that thesc two
clements of a physical theory have a unique connection, so that the formalism implics
the interpretation; this ~idcly hcld vicw is clearly stated by Rosenfcld (1957). Such
a view raises several problem~¡ even if it were true, it wOllld not be hclpful llntil we
actually knew how to deduce the interpretation from the formalism; and since, aboye
aH for quantum mechanics, no one has been able to carry out such a programme
of deducing the interpretation, we cannot do better than to continue comparing
the rclative merits of d¡frerent interprclations. But the view is not cven true; this is
obvious when we consider that the interpretatioo of a formalism, ¡.c. the connection
\,,'e propose to establish between the various concepts of the formalism and elements
of physical reality,5 involves notions that do not at aH appear in the formalism.
Moreover, historically the first vague ideas of what later bccomes the interpretation
procedes the construction of the formalism, and it is preciscly because the connection
between the two is not unique that thc business of scientific rescarch requires that
clement of creativeness a11 the great sdentists have insistcd upon. Also, it must not
be forgotlen that scientific throries are not stalic¡ the)' change and evolve; sometimes
it is the interpretation that changes, as when the ideal gas laws are reinterprcted in
the light of the microscopic modcls of statistical mcchanics; somctimcs the formalism
is renewed, as when classical mcchanics is rewrittcn by lIamillon and Jacobi. In

~The language here is deliberately borrowed from Einstein (Einstein, Podolsky and Rosen 1935);
for the problem is a real one only in his materialistic philosophy. In the phenomenalism of Mach
or the conventionalism of Poincaré it reduces to a methodological question of HUle fundamental
interest, and for a subjective idealist it vanisht's complelely.
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quantum mechanics, in particular, the formalism has not remained at aH static,
and we have a lIilbert-space version, a C*.algebra one, and lattice-theory one -not
forgetting the two original formulations of Schrodinger and Heisenberg-Born.Jordan.
Do we then have to find a slightly different interpretation for each of thcse versions?

But if the RosenCeld view oC a unique connection betwecn Cormalism and inter-
pretation is not tenable, neither is the view apparently held by many critics oí the
Copenhagen interpretation (1 say lapparently" for its absurdity would be patent iCit
were fully spelt out, and so it can at best be glimpsed as implicit in their writings)
that tbese two components are largely independent, so that one can remove the
interpretation Crom a theory and sirnply plug in another one. This view might be
tenned a 'Meccano' one; household appliances and motorcars can be built on such
a principie, but scientific theories lie beyond its paleo We nred not labour the point.

Clearly the actual situation Hes in between these extremes. Formalism and inter.
pretation do not imply each other, and are oot mutually deducible; but neither are
they independent, to be changed at the whim oC the scientist. They have a strong
influence 00 each other. This Cact has an obvious implication here: iCthe ensemble
interpretation of quantum mechanics is to be made Cully workable, we may expect
that sorne change in the Cormalism will be required. Just what changes are in fact.
needed is atill an open question, requiring much further work; in the next sections
sorne relevant ideas are discuased. It might be said, oC course, that with such changes
in the formalism we no longer have quantum mechanica, we have a new theory. This
is to sorne extent a terminological question to be settled by convention, though only
a radical change in basic notions, methoda and results could really justiCy speaking
oí an entirely new theory¡ the changes that can at prcsent be foresren, however, are
hardly more irnportant than foc instance the introduction oC superselection rules.
But a more significant answer ia that the general acceptance oí what we have caBed
the ensemble interpretation would surely mean the equally general relinquishment
oC the Copenhagen interpretation: this is not what would be expected jf it were to
constitute a new theory, aince new theories (pace Kuhn & Co.) do oot replace earlier
ones except in special, lirniting situations.

It ia perhapa more important to observe that iCwe abandon Rosenfeid's view
then we muat look for a criterio n oC choice between the alternatives for an interpreta-
tion. Qne should expect, on general grounda, to derive experimental tests; after aH a
difference in interpretation signifies a difference in the links betwren formalisffi and
observable fact. Unhappily, in the present case nothing oC the kind seems possible.
Two factors combine to bring this about: on the one hand, in aIl interpretations of
the probability concept -and we have seen how central this is to the formulation
oC the two main interpretations oí quantum mechanics- the experimental estimate
of a probability is derived from a relative frequencYj and on the other, it is quite
usual to find experimental physicists who in writing adhere to the Copenhagen
interpretation but whose experimental practice corresponds to the ensemble one.
There is thus no way experimentally to decide between the two interpretations.6

.It waa hoped at one time that Bell'8 in~quality (Sell 1965; !leeal80 Clauser and Shimony 1978)
might indirectly provide relevant evidence, in that its experimental confirmation would eliminate
all but macrOflcopicallynon~local hidden.variable theorie8. As we 8hall see below, the concept of
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Since conceptual simplicity is al best ti. confllsed and suhjedivc criterion (Bunge
1963), thcre remains only one possibility: fruitflllncss in suggesling CUTthcr lines
oC rcsearch. In lhe lasl section we shall sho\\' that on lhis criterion lhe ensemble
intcrpretation wins hands down.

Anothcr point concerns lhe "rcturn lo oulmoded c1assical modcls" whiel! has
becn a common rcproach dircctcd al nilies oC tllf' Copcnhagcn intcrprctation. Now
it is lruc that lhe ensemble intcrprelation makes no such demands oC ontological
rcncwal as lhe Copcnhagen vicwpoint do(~s-no doubts abanl lhe undcrlying rcality,
no holislic implicalion uniting Objfft and mcasuring dcvicc, no rcnunciations oC
causality (which, morcovcr. is gcnerally confuscd .••..ith determinism). I3ut it is not
at aH t;ue that it reduces quantum thf'ory to a sI)('cial if dahorate case of classical
mcchanics, for two good rea..<;ons:as the romparison with stalistical mcchanics makes
clcar, in a statistical (or bettcr, ensemhle) thror)', new conccpts and qualities appear
(e.9. temperature or entrop)'), others disappcar (the positions and momenta of the
microscopic eomponcnts) and even ncw ba..<;ieprincipies (irreversihility and ergodic-
ity) can arise which not only have no counterpart in thc underlying mcchanics hut
can even eontradict it; in the present case, mor('()ver, the ensemble interpretation is
not a complete statistical th('Ory. for it lacks the rcquirl.'(1Tllechanical theory that it
wouId be based uron.

Precisely this is the Ia..'itpoint to !leed making here: in the ensemble interpreta-
tion Einstein's throrem on the incompletcness of quantulll Tllcchanics acquircs the
spceific meaning just mentioncd; quantum mcchanics, thcn, requires an undcrlying
physical mode! of which it will be the statistical thror)'. In a sense we shall have here
a hidden-variable theory and we must thereforc explore the question to what extent
such thoories are conceivabIc, and haw far it has Leen possibIe to conslruct thcm.
lIere we anticipate the discussions helow to IIndcrline that the ensemble interpre-
tation provides both the motivation for rescarch in this direction which has proved
to be very promising, and the link bctwren the resulting throrctical constructions
and quantum rnechanies. The Copenhagcn interprctation, 00 the other haod, leads
to the conclusioo that this liBe of work is impossible; it has even heen USM to turn
quantum mechaoics into the defioiti\'c fundamental throry of ph)'sics, no loogcr
susceptible oí further modification (Born lIeisenl)('rg 1928); we need nol refer to thc
maoy historieal prccedents of similar predictions that furtber rcsearch has falsified.

v
On the ba..<;isof these general considerations it is possibl<, now to <,xamine the prob-
¡cm of the joint probability distributiolls.

The first observation to he made here conccrns point (i) in scction 111. An
cnsemble thcory nccds appropriate probability distributions over a suitable sample
space; but that this sample space shonld be tIJe phase spacc of c1assical rnechanics
-augmented or oot- is a matter that all writers on the subject have simply takcn

hidden variables ¡s, though not implied, at Ie-ast SIlUNite-d by the ensemble interpretation. But
rccent work (Brody and de la Peña, 1980; Brody 1980) has dashcd this hopeo
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for granted. Il is at first sight plausible, particularly in view oí an early paper
by van Neumann (1931); but it springs from tIJc notion that quantum rnechanics
should in sorne sense be derivable from classical mechanics. Ir this is not so, if
classical mechanics appears as a Iimiting case of quantum mechanics but not also
as its basis, then tIJere is no special fl'ason to accept thc dassical phase space as
tIJc sarnple space rclevant to the ensemble interpretation. No work appears to have
becn done 00 this qucstion, so that no more can be said here beyond pointing out
ao open problem.

\Vith this reservation we may accept classical phase space as the basis for the
ensemble interpretation, and go 00 to considcr point (iv). The meaning of the stip.
ulatioo that Eq. (14) should hold becoTllesdear if we take the sirnplest case, b = a2
corresponding to II = .12• The s(luarc of an opcralor will corrcspond experimentally
cither to the repetition oí a measurement on the same system, or alternativcly to a
different device that measures the observable A2. In the second case there sccms no
conceivable rcason to slIppose that Ec¡.(14) should always hold; only the first implies
this, under the conditioo that w(' accept the projeclion poslulate (without which the
lwo measurcments might yicld diffcrent eigeovalu<'Sof .4). Bul we have already noled
lhal the projection poslulale is lInlcllable in lhe ensemble interprctation; it migbl
be added that il does not corrcspond to lhe rnajority of experimental situations.
Thus (iv) is not in general valid in quanturn Illcchanics, and condusion (vi) need
110 longer be laken as slanding in the way of a consistent ensemble interprclation.

Conclusion (v) presenls us with a different situation. It is not in itself a very
plausible requirerncnt lhat lhere should be a unique rule for deriving lhe quantum
mcchanical dislribulion funclion, in lhe sense that Eq. (19) admits only one fundion
g(O,r); on the one hand, such a requirernent has no analogue in classical statistical
theories and would lherefore lIC'Cda spccific juslification which it has never receivedj
and on the other hand, as is weJl known (sce C.y. Cohen 1966a.c), each y(O, T)
generates a particular correspondencc rule bctwC'Cnclassical quantities and quanlum
operators, while no single such rule can have general validity (Shcwell 1959). This
last point is obvious enough, for the existence of sllch a privileged corresponden ce
rule would tie quantum mechanics to lhe apron slrings of classical m~hanics in a
very unacccptable way.

Unfortunately, this docs not d¡spose of the malter. As is already clear from the
cxample of the harmonic oscillator, a joint distribution function would have to be
state dependent, as wcll a~ problem depcndent.

That it should dcpend on the parlicular prohlem what g(O, r) is appropriate
sccms eminently reasonablc; lhat 9 should also be a functional of lhe quanlum state
is clearly ¡ess so. \Ve musl conclude that lhe conditions gi\'en in seclion 111must be
rcformulated, but il is not yet complcle1y clcar in what terms; though conditioll (iv)
can be eliminated, something rnusl be added that will allow an appropriate frC(."(iom
oí choice for g«(}r) while al the same lime a physically plausible picture is crealed.

Research on lhese questiolls has becn going on now for sorne time, with useful
and intercsting results, but no definilive solution as yet. CuriousIy enough, though
various groups have proceeded 00 the basis of quite dissimilar notions, their con.
clusions converge. Apart from lhose authors (e.g. Shankara 1967, Leaf 1978) who
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attempt lo remain within the framework oC lraditional quantum theory, two lines
of thought appear.

One is due to Prugoveéki (1976, 1979; AIi and Prugoveéki 1977; 80isseau and
Ilarrabes 1978) and is based 00 the concept oC a 14fuzzy" sample space, made up
oC "fuzzy" sample points defined as a point in phase space together with a cerlain
"confidence fundion" giving the certitude oC how ncae aD experimental observalion
actually is lo the poinl. The unsharpness oC sueh poinls raises a number oí problems,
among others certain conceptual difficulties with the confidence fundion. For the
pecseot purpose, however, the maio awkwardness oC the "fuzzy" approach is that
fuzziness is takcn as a primitive concept, nol further explained¡ thus the approach
sideSleps the problems rather than elucidating them, and though on this basis it
is possible to define probability functions that are positive semidefinite and fit into
the quantum-theoretical pieture, they are not ordinary probability distributions in
the sense of Kolmogorov, say, and their use would require more fundamental study
than they have yet received. We shall not further diseuss this approaeh here.

A second approaeh is represented by the very different formulations of Bopp
(1956), Ruggeri (1971) and Kuryshkin (1972a,b, 1973). I3opp's paper broke new
ground and in faet antieipated the later work of ShewelJ (1959) and Cohen (1966)
in many ways. His proposal was -in the terminology used here- to introduce a
particular fuoetion g(fJ, T; f) that depends 00 a parameter which possesses many
of the eharacleristics of a fundamental length. Now g(O, T; l) = 1 only in the Jimit
l --+ 00; henee we do oot here satisfy eondition (¡¡e) except approximately; condition
(iv) is likewise not satisfied. Bopp's work has bren rather unjustly neglected and
incorrectly described as wroog (Kuryshkin 1973); it is so only in the sense ofbreaking
with the Copehnagen interpretation. The choice that Bopp made for 9 was a little
too specialized, and the papers by Ruggeri and Kuryshkin attempt to remedy this;
their methods are at first sight quite unrelated but work in course by my eollaborator
J.L. Jiménez establishes the fundamental identity of these three approaches and
their eonnection with related work.

Further possibilities exist that have not yet becn worked out. One promising
idea is to take explicitly into account the commcnt made above that eigenstates of
zero width are idealizations. This can be done by eliminating pure states froro "real"
quantum mechanics and only admitting density matrices sueh that tr p2 ~ tr p = 1.
Whether this gives rise to a feasible theory is at present under study.

There is, however, one problem with such approaehes. We noted that Pru-
goveeki's fuzziness concept is not really satisfactory, essentially bceause it makcs
it impossible to reaeh the underlying physies; the Bopp-Ruggeri-Kuryshkin method
does not do this, bul as yet it láeks any background model that would make its var-
ious assumptions sufficiently plausible and remove their rather indefinite generality.
After aH, the ensemble interpretation is not looking for a new formalism; it looks
for better physics and it necesaarily adapta the formalismo

80th these approaches involve funetions g(9, T) that do not satisfy Eq. (20);
thus the marginal distributions of q and p will not quite equal 1'¡'(q)I' and 1q\(p)I'
respeetively; this diserepaney with the prediction of usual quantum theory requires
discussion. Quantitatively, the differenee can be explained as the effect of experi-
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mental uncertainty, as has been shown by Cartwight (1976) and Yoshihuku (1979);
if one considers that the experimental errors in the measurement of q and P obey
Gaussian distributions Xq(O and Xp(7J) with dispersion a; and a~respectively, then
the experimental joint distribution will be given by the joint distribution of q +~
and 1'+77, that is to say the convolution of j(q,1') with Xq and Xp; ami the resulting
distribution function is non-negative provided

(22)

It is evident, then, that a non-negative distribution function f(q,p) can come
as ncar as one whishes to reproducing one or the other of the quantum-mechanical
marginal distributions, which are thus seen as the limiting cases of infinite experi-
mental precision; and even when ooth dispersions have to be taken into account, the
uncertainty-like inequality (22) imposes no restriction that we can as yet achievc
experimentally. For the lact is that the experimental validity 01 l'¡'(q)l' and 1<¡?(p)I'
for the experimental distributions has not received anything like as solid an experi-
mental confirmation as one could wish. The be<;t data available have been obtained
from experirnents with particle beams, where !Í'(p) is well defined but, because the
systern is not confined, t/J(q) is not normalizablc and the relation betwccn the two is
not simply that of Fouricr transformalion as rcquired for the theary that interprets
them as rnarginal-distribution amplitudes¡7 on lhe olher hand, for confined systerns
rneasuremcnts of sufficient precision secm lo be very difficult. Since so far the exact
form the marginal distributions given by a positive joint distribution function have
not yet b<.-"Cnworked out, the malter must be considered one more open problem;
bul it might be added that the theary of stochastic electrodynamics, to be discussed
should differ slightly from the quantum prediction.

In summary we have more problems calling for future work than answers in this
maltee of lhe joint (listribution of q and Pi yet it may fairly be concluded that our
failure so far to find fulIy satisfactoey joint distributions cannot be ascribed to a
fundamental weakness of the ensemble interpretation.

VI

\Ve llave so far discussed two of the thrce difficullies mentioned above thal arise
in the attempt to make 'the ensemble interpretation complete and consistent; bul
the third is in a way the most intercsting. Thc EPR theorem (Einstein, Podolsky
and Rosen 1935; Einstein 1949) leads to the conclusion thal quanlum mechanics
is incomplete. For the ensemble interpretation this conclusion is inescapable and
therefore raises the problcm of haw to complete the theary. The incompleteness of
quantum rnechanics takes a specific form in the ensemble interpretation, as we have

TThe ordinary Fourier lransform musl be generalized lo cover this case, and the function 1\b(q)l2
must be interpreted as a probability distribution in the sense of Itényi. Certain conceptual problems
arise lhal ha\'e nol yel been elucidated.
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mentioned: the formalism provides no guiding lines for the choice oí aD ensemble
on which lo base lhe lheory. Any allempl lo formulale a suilable physieal modcl
which would give rise to aD appropriate ensemble must therefore ¡ead us beyond
quanlum mechanics. We shall outline in lhe last sectioll a possiblc theory that <loes
jusl this¡ hefe we have first lo face lhe third difficully alluded lo aboye: the existence
oí peoofs that a complelion oí quanlum mechanics, oí the sort contemplated hefe,
is impossible. In other words, we have lo deal with the hidden-variable problem.
Much oí lhe exlensive literature conccrning it secms to obfuscatc lhe mattee, and
1 entee 00 it hefe only because 1 considcr it to be much simpler that it is gcnerally
lhoughl lo be.

The firsl peoar oí lhe impossibility oí hidden variables was given by von Neu.
mann (1932) as a straightforward corollary of his dcrivation of the density-matrix
formulation for quaotum mechanics. For many years this proof was taken to be con-
clusive, though many people felt misgivings about its implications (t.g. de Broglie
1956); then certain weaknesses in the dcrivation of tIJe density.matrix results were
discoveroo, and for some time these appeared to justify a search for hidden-variable
theories. The question had acquired importance bccause of the appcarance of a fully
workcd oul hidden-variable theory, due lo Bohm (1952); lhis lheory has imporlanl
weaknesses froro tbe physical point of view (in particular with an implausible space
depcndence), but it provided a counter examplc to von Neumann'5 thcorem --or
so it seemed. But further work, in particular by Kochen and Spccker (1967) and
by Gleason (1957), then reestablished the validity of von Neumann's density-matrix
theorem, and therewith also the hidden-variable corollary. A good summary of these
developmenls may be found in Bell (1966).

Yet, interesting though Gleason's theorem certainly is, it is irrelevaot to the issue
of hiddeo variables; foe the validity of von Neumaon 's result was never in doubt,
only his methods of prooL This, though obvious once it is poiotcd out, secms to
have been generally overlooked. From the ordinary lIilbcrt-space formalisml basoo
00 pure states, the density.matrix formalism may be derived though ao additional
postulate which seerns unchallengeable; inversely, apure state takes the form oí
a special dcnsity matrix. 80th coonections can be found fully workcd out io von
Neumman's book. As a consequencc, ir the density.matrix theorcm had to be given
up in order to aUow the introduction pf hiddcn variablesl the rcst of quantum
theory would also have to be given UPI which is just what hidden.variable theories
are ¡ntended to prevcnt.

Fortunately the way out of this dilcroma is oot diflicultj in fad, it could have
been found in von Neumann's book itsclf, foe he carefully specificd tIJe hidden vari-
ables he proposed to exclude as deterministic, ¡.t. (lispersionlNis. lIis corollary does
not apply to stochastie hidden variables. This becomcs clear whcn it is observed that
the corollary ¡s in faet the quantum-thooretieal case of a much general result, valid
for any statistieal theory. The general case is a simple consequence of probability
theory: consider the dynamieal variable x of statistical theorYI witIJ a distribution
funetion 8 P(x). This theory is to be embedded in a broader theory which contains

.Here we use distribution functions (which are integrals over probability densities .•••.hen these
exist), to make the argument simple and g~>neral.
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the hidden variable h as well as x; this mean s that we must find a joint distribution
function Q(x, h) sueh lhat P(x) is the marginal distrihution for x in it. Let R(h)
he the distrihution oCh and P,(xlh) the eonditional distrihulion of x given h. We
have, from standard probability theory

h

Q(x, h) = L", P,(xlh')dR(h'). (23)

If h is to be a hidden variable oC deterministic type, with the fixed value h = ho,
lhen

{
l h>hR(h) = - o
O h < ho

and thus

dR(h) = 6(h - ho)dh.

Suhstituting (25) in (23) we have

(24)

(25)

{
P,(xlho)

Q(x, h) ~
O

Therefore

h ~ ho,

h < ho.
(26)

P(x) = Q(x,oo) = P,(xlho).

Using (24) and (27) in (26), we have

Q(x,h) = P(x)R(h).

(27)

(28)

We eonclude from (28) that x and h are slalislically independent. Since this argu.
ment can obviously be carried through Cor the set x oC the dynamical variables and
the set h of "hidden" variables to be added to them, the variables oC the original
theory are statistically and thus also functionally independent of the h's, which
therefore are irrelevant to any explanation of the behaviour oC the x's. Nothing is
gained hy adding lhe h's. If we allow h lo vary over a small interval, fmm ho to h"
say, then

R(h) = t h> h,

h < ho
(29)

and the argument is still valid outside this ¡nterva!. Only if this interval is large
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enough to be significa.nt within the original theory can there by any genuine coo-
Dedioo, slatistica.1 dependen ce or otherwisc, between x and h.

Note that the conclusion depends entirely 00 the requirement of maintaining
the character oí the original theory i.e. that the introduction of the hidden variable
h does not alter P(x); if this requirement is dropped the conclusion that h must
also be a stochastic variable no laoger follows. Nor does the argument apply lo the
introduction oí h as a new parameter in P(x)j it musl be a new dynamical variable,
in the scose oí being al least statistically linked lo the other dynamical variables.

Returning to the particular case oí quantum mechanics, thc situation with
regard to von Neumann's corollary ¡s, then, 1ha1 its validity necd no longcr be
disputed but its rneaning has to be reinterpreted. Stating it positively, we draw
froID it the coocIusion, not that hidden.variable theories are impossible, but that
they must be stocha.stic theories. Scen in this way, the corollary provides ti useful
hint for further research, rather than figuring as an obstacle to it, as seen by the
Copenhagen schooI. The hint is borne out hy the Bohm theory and indeed all
other hidden-variable theories that have achieved sorne sort of consistency: without
exception their hidden variables are stochastic in nature and are not dispersionless.

1t is sometimes said that if hid<len variables cannot be dispersionless then they
are useless. But it should be cIear that this view is inspired more by a desire to return
to a fully determioistic, Newtonian kind of physics, and whilc quantum mcchanics
(or rather the immeose raoge of experimental results that it accounts for satisfaeto--
rily) should not lead us to abandon the ontologically fundamental status of reality,
it should convince us of the limitations of a purely mechanistic physics. ~loreover,
the idea that a stochastic theory cannot provide the basis for completing quantum
mechanics and so yield a deeper understanding of it ignores the Icsson of statistical
mechanics: bere we bave an entirely stochastic theory that has cnormously enrichcd
and broadened our understanding of thermal physics and has gone well beyond the
limits of applicability of the thermodynamics it was intended to undcrpin.

But statistica1 mechanics, as already noted in section IV, holds the furtber lcsson
for us that the underlying cla.ssical mechanics differa markedly from it in charaeter,
concepts and maio quantities. This will be relevanl below.

VII

To sum up, we bave seen that, from the point of view of the ensemble interpreta-
tion, quantum mechanics is incomplete, that any completion should be atochastic
in nature, and tbat the resulting thoory willlikely be oí very different charaeter.

Severa! theories along auch lines have been suggested in the past; the tirst would
appear to have been due to Fényes (1952). They have not, on the whole, becn
very successCul, and Corthis there are two reasons. Qne is a technical problem: the
best.known stochastic process ¡s, of oourse, Brownian motion, and this misled many
workers into ideotifying the procesa underlying quantum mechanics with a \Vinger
process (the mathematical model for Drownian motion)¡ that the two, though re-
la.tOO,are different W&8 tirst shown by de la Peña and eetto (1977a). There are now
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reasons, as we shall note, for believing that the process is not even Markovian. The
other reason is that without a physical model to serve as starting point, background
and touch-stone, ,a mathematieal deseription of a stochastic procesa, however inge-
nious, will be somewhat arbitrary and even ad hoc. Of course one has the great
advantage of free choice of a nice, simple, tractable mathematical problem if one
ignores physical models; but one runs the risk that the nice easy problem can he
quite misleading.

1propose therefore to outline here a theory that is far froro having a finished form
as yet, hut does possess a plausible physical conception to base its mathematical
strllcture on; and however provisional the present form of the thcory may be, it
has already had sorne significant successes. This thcory, stochastic electrodynamics,
owes its inception to Braffort and coworkers (Braffort, Spighel and Tzara 1954;
Braffort and Tzara 1954; Braffort, Surdin and Taroni 1965; Surdin, Braffort and
Taroni 1965) and independently lo Marshall (1963; 1965 a,b) who gave il ils name;
il has been furlher developed by Sanlos (1975), Boyer (1975), de la Peña and Cello
(1977b), Claverie and Diner (1976); lhe lasl lhree inelude a review of lhe earlier
work.

The underlying physical conception i5 simple: consider a charged partide, 5uch
as an electron; in its movements it emits electromagnetic waves described by radia-
tjon-reaction terms; if jt is considered in isolation, it would therefore lose energy
and, in the case of an orbital elcctron, Call into the nudeus. Thia is the dassical
picture, often considered as aD argument for quantum mechanics. But -and this
is the central point of stochastic electrodynamics- the electron is not isolated; aH
the other charges in the universe also emit radiations through the same mechanism,
and since these radiations are evidently incoherent, the electro n being considered is
bathed in a stochaslic radiation field. The problem to be solved is thus the motion
of a c1assical charged partide under the joint effect of a stochastic electromagnetic
field, the radiation reaction and any external force (e.g. the Coulomb attraction of
th~ nucleus) that may be presenl.

The radiation reaction is of course well known; it is given by the Liénard-
Wiechert potential, and for non-re!ativistic specds is usualIy well approximated by
a term proportional to the third derivative of the particle's position vector. In the
sarue approximation only the electric component of the stochastic electromagnetic
field need be taken into account. But because this is a stochastic force, we can at
best write a Langevin-type equation, and can derive conclusions from it only if the
probability distribution of this force is known. Befe we see the significant advan-
tage of stochastic electrodynamics over earlier thcories as a physically grounded
conception¡ foc not only is the physical roodel plausible, hut the stochastie prop-
erties of the background radiation field can be derived quite independently, from
conaiderations oí relativistic invariance (Marshall 1963, Santos 1974) and others
(Jiménez, de la Peña and Brody 1980). The spectrum so predicted coincides with
the quantum-electrodynamical one (w being the frequency),

h J
p(w) = 2~2c'w (30)
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bul h is rncrely a proportionality conslanl that yiclds the amplitudc oí the f1uct.u-
atiaos in the slochastic background field¡ the use oC the symbol h anticipatcs that
evenlualIy ordinary quanlum mechanics has lo be rccovcred. This is tite oue paint
in slochastic eleclrodynamics where this constanl is inlroduccd.

The equation oí Langevin type ror a particle oC mass m and chargc e now
becomes

d'x d'x
mdi2 = ¡(x) + Tm di' + eE(i)

the so-caBed Marshall.Brafforl equation, in which

(31 )

(32)

and E(t) is the component along x of the random e1cclric field (ror simplicity we
ooly consider the one-dirncnsional case), ror which lhe expectation value is

(E(t)} = O (33)

and the spectrum is givcll by Eq. (30). \Ve shall no1 cnlcr here ioto the dclails
oí how phase-space and configuralion.space probabililY dislribulions for particlcs
obeying Eq. (31) are derived, since lhey are complex and have already appeared in
the papers cited. Certain points, however, are rclcvanl here:

a) The stochastic proccss considered here is markedly non.!t..farkovian; bul as
equilibrium is approached, the importance of thc memory tcrms diminishes. Very
c10se to equilibrium, thc radiativc tcrms in (31) tcnd to c::anceiout, and the configu-
ration-space amplitude thcn satisfies the SchrOdinger equation: quantum mechanics
is thus the equilibrium limit for this theory.

b) If we assume that an equilibriuITl state exists (this has not yet hecn provcd for
aH rclevant cases) then it will be reached rather rapidly; for instance, the relaxation
time for an atomic orbital electron is oC the order oC 1O-23s. Before equilibrium has
been reached, the configuration.space d,istribution and the moment.space one are
oot necessarily Fourier lransforms of each other ami so the IIcisenberg uncertainty
relations may he violated (in the enscmble-interprctation sense. evidently, that the
product of the statistical dispersions may he less than th). In a particle beam, no
equilibrium stale in thc strict sensc can exist, if wc take thc bcam lo be infinitcly
long; but even in a finite bcam only qllasi-stationary sta tes should be expeeted, and
so lhe actually observed dislribulions of q and p could slighlly divcrgc from 1tI>(q)¡'
and 1<J¡(p)12• respectivclYj this purely qualitative argument was made use of above.

e) As the detailed analysis of thc harmonic oscillator (de la Peña and Cetto
1979) in this theory shows, the quantum.mechanical diserete states are recovered.
That there exists a ground state of finite energy, at whieh radiation reaction and
absorption from the stocha.stic field balance each olher. and that this stale is stable,
couId already be seco by simple "hand.waviog" arguments (Claverie and Diner
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1976); that lhe energies of lhe excited states should also be correctly reproduced
was nol so clear; but that these stales should be shown to have widths (in the sense
that the instantancous energy fluctualcs and is equal to the quantum value only in
the mean) was surprising. This last result, it should be noted, fits in well w¡tb the
ensemble interpretalion hut not wilh lhc orthodox Copenhagen views.

d) A considerable numher of delailed predictions have already bren derived from
stochastic c1ectrodynamicsj thcse range from the Planck black-body spectrum to
the non-relativistic Lamb shift, and generally agree very well w¡th the predictions
of standard quantum thcory. Out the thcoretical structure is far from complete,
largcly because no general malhematical formalism has yet becn developed, and
problems have lo be tackled piecemeal. Neverthcless, for a great many qucstions
rough qualitalivc arguments are availablc that show that at Icast in principIe it
should be possiblc to answer them satisfadorily within the framework of stochastic
clectrodynamics.

e) Stochastic elcctrodynamics does not agrcc cverywhere with quantum mechan-
ics; unlike the ensemble int.erpretation of the lalter, it is a new theory. However, so
far it has nol proved possible to make prcdictions from it thal difrer in an experi-
mentally accessible way from tIJe standard quantum resulls.

There is one feature of stoehastic c1eetrodynamics to which attention should be
drawn: it is from its very ineeption a lhcory of open systems. In more than one
sense lhis constitutes perhaps a more decisive break with classical physics than the
Copenhagen interpretation ever achieved. \Ve are very far from understanding as
yet all the implicalions of this fact; but a highly significant consequence is that in
this theary there are no exact conservation laws, -only slatistical ones. Hence al!
synunetries will hold only on the average, and we may guess that conceivably this
will provide a mechanism to comprehcnd "spontancous" symmetry breaking¡ out
this is speculation. \Vhal scems eIear is that the ultimate consequences may provc
C\'cn more fundamental than the appearancc of irreversible phenomcna and hence
of "tirne's arrow" when therrnodynarnics first -and as we now see, rather timidly-
broke through the restrietion of fundamental physical thcories to closed systems.

Thus we have here thc bcginnings of a hiddcn-variable theory that is intended
to underpin but also to go beyond quantum mechanics¡ in fad, the direction in
whieh sueh a theory should be sought ror was pointcd to by that interpretation.
The Copenhagen interpretalion, on the other hand, never encouraged 5uch a devel-
opment and in the view of sorne cven forbadc ¡t.

VllI

By way of a general coneIusion we may say that the ensemble interpretation, so
rar (rom bcing nonexistent as has sometirncs becn stated (IJanson 1959), forms a
consistenl body of ideas that removes or at least permits clearing up the peculiar
paradoxes arising in conneetion with the Copenhagen interpretation, that Shed8light
on ccrtain questions otherwise not even touched, and that rather strongly directs
further rescarch along promising new lines. Nevertheless, not all its problems have
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yet been salisfactorily settled; much work remains lo be done, though there is ¡¡ttle
reason lo expect significant conceptual breakthroughs from such investigations: it
is rather a mattcr oí adequately completing what has already been outlined.

The future oí slochastic electrodynamics is another mattcr¡ hefe even funda.
mental conceptual problerns may have lo he sol ved befare it is possible lo say that
this theory has firm foundalions.

Bul what is lo be stressed is that the philosophical problems (elt lo be peculiar
lo quantum mechanics in the past gimply dissolve in the ensemble interpretation;
this leaves room ror lackling the genuine problcms.

1 would like to express rny gratitude to J.L. Jirnénez to whorn rnany oC the
results oí section V as well as othcr points are due, and lo Luis de la Peña, for
numberless useful discussions and thorough reading of the manuscript.
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